J. Mater. Sci. Technol. ›› 2021, Vol. 77: 187-195.DOI: 10.1016/j.jmst.2020.10.052
• Research Article • Previous Articles Next Articles
Hongge Lia, Yongjiang Huanga,*(), Jianfei Suna, Yunzhuo Lub,*(
)
Received:
2020-08-05
Revised:
2020-10-15
Accepted:
2020-10-27
Published:
2021-06-30
Online:
2020-11-22
Contact:
Yongjiang Huang,Yunzhuo Lu
About author:
luyz@djtu.edu.cn (Y. Lu).Hongge Li, Yongjiang Huang, Jianfei Sun, Yunzhuo Lu. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy[J]. J. Mater. Sci. Technol., 2021, 77: 187-195.
Fig. 1. (a)The SEM image showing the morphologies of the raw CoCrFeMnNi HEA powders, and (b) the outer appearance of the single-track CoCrFeMnNi HEA parts fabricated by LMD process.
Proprieties | CoCrFeMnNi | 45# Steel | Parameters | LMD |
---|---|---|---|---|
Density (kg/m3 ) | 7980 | 7840 | Laser diameter (mm) | 3 |
Latent heat (J/kg) | 2.20 × 105 | 2.47 × 105 | Laser power (W) | 1400 |
Solidus temperature (℃) | 1250 | 1350 | Scanning rate (mm/min) | 600 |
Liquidus temperature(℃) | 1340 | 1500 | ||
Radiation coefficient | 0.85 | 0.85 | ||
Convection coefficient(J/m2 s℃) | 80 | 80 |
Table 1. The thermo-physical properties of CoCrFeMnNi HEA and 45# steel, and the processing parameters for the LMD process.
Proprieties | CoCrFeMnNi | 45# Steel | Parameters | LMD |
---|---|---|---|---|
Density (kg/m3 ) | 7980 | 7840 | Laser diameter (mm) | 3 |
Latent heat (J/kg) | 2.20 × 105 | 2.47 × 105 | Laser power (W) | 1400 |
Solidus temperature (℃) | 1250 | 1350 | Scanning rate (mm/min) | 600 |
Liquidus temperature(℃) | 1340 | 1500 | ||
Radiation coefficient | 0.85 | 0.85 | ||
Convection coefficient(J/m2 s℃) | 80 | 80 |
Temperature (℃) | Thermal Expansion Coefficient (m/(m℃)) | Young’s Modulus (GPa) | Poisson’s Ratio | Heat Capacity (J/(kg℃) | Thermal Conductivity (W/(m℃)) | Yield Strength (MPa) |
---|---|---|---|---|---|---|
25 | 1.58 × 10-5 | 194.63 | 0.28 | 494 | 12.46 | 620 |
100 | 1.68 × 10-5 | 188.38 | 0.31 | 522 | 14.19 | 525 |
200 | 1.80 × 10-5 | 183.75 | 0.33 | 545 | 15.98 | 420 |
400 | 1.92 × 10-5 | 168.84 | 0.38 | 570 | 18.96 | 370 |
600 | 1.99 × 10-5 | 154.55 | 0.43 | 623 | 22.94 | 320 |
800 | 2.04 × 10-5 | 137.51 | 0.45 | 628 | 24.71 | 190 |
1000 | 2.11 × 10-5 | 124.51 | 0.46 | 642 | 26.93 | 70 |
Table 2. The temperature-dependent material properties of CoCrFeMnNi HEA.
Temperature (℃) | Thermal Expansion Coefficient (m/(m℃)) | Young’s Modulus (GPa) | Poisson’s Ratio | Heat Capacity (J/(kg℃) | Thermal Conductivity (W/(m℃)) | Yield Strength (MPa) |
---|---|---|---|---|---|---|
25 | 1.58 × 10-5 | 194.63 | 0.28 | 494 | 12.46 | 620 |
100 | 1.68 × 10-5 | 188.38 | 0.31 | 522 | 14.19 | 525 |
200 | 1.80 × 10-5 | 183.75 | 0.33 | 545 | 15.98 | 420 |
400 | 1.92 × 10-5 | 168.84 | 0.38 | 570 | 18.96 | 370 |
600 | 1.99 × 10-5 | 154.55 | 0.43 | 623 | 22.94 | 320 |
800 | 2.04 × 10-5 | 137.51 | 0.45 | 628 | 24.71 | 190 |
1000 | 2.11 × 10-5 | 124.51 | 0.46 | 642 | 26.93 | 70 |
Temperature (℃) | Thermal Expansion Coefficient (m/(m℃)) | Young’s Modulus (GPa) | Poisson’s Ratio | Heat Capacity (J/(kg℃) | Thermal Conductivity (W/(m℃)) | Yield Strength (MPa) |
---|---|---|---|---|---|---|
25 | 1.25 × 10-5 | 206.63 | 0.28 | 472 | 47.15 | 1280 |
200 | 1.33 × 10-5 | 183.38 | 0.29 | 480 | 45.25 | 970 |
400 | 1.47 × 10-5 | 145.75 | 0.31 | 524 | 38.23 | 840 |
600 | 1.50 × 10-5 | 118.84 | 0.40 | 615 | 37.07 | 680 |
1000 | 1.68 × 10-5 | 87.51 | 0.45 | 806 | 54.36 | 510 |
Table 3. The temperature-dependent material properties of 45# steel.
Temperature (℃) | Thermal Expansion Coefficient (m/(m℃)) | Young’s Modulus (GPa) | Poisson’s Ratio | Heat Capacity (J/(kg℃) | Thermal Conductivity (W/(m℃)) | Yield Strength (MPa) |
---|---|---|---|---|---|---|
25 | 1.25 × 10-5 | 206.63 | 0.28 | 472 | 47.15 | 1280 |
200 | 1.33 × 10-5 | 183.38 | 0.29 | 480 | 45.25 | 970 |
400 | 1.47 × 10-5 | 145.75 | 0.31 | 524 | 38.23 | 840 |
600 | 1.50 × 10-5 | 118.84 | 0.40 | 615 | 37.07 | 680 |
1000 | 1.68 × 10-5 | 87.51 | 0.45 | 806 | 54.36 | 510 |
Fig. 2. (a) XRD patterns at different positions with inset highlighting (111) peaks, (b) fitted FWHM results and (c) residual stress measurements along the deposition direction in the single-track CoCrFeMnNi HEA parts fabricated by LMD.
Fig. 3. (a) OM image showing the longitudinal cross-sectional microstructures, (b) and (c) SEM images of the bottom and the top part marked by yellow boxes in (a), (d) EBSD image, and (e) elemental distribution maps of the as-deposited CoCrFeMnNi HEA.
Fig. 4. Bright-field TEM images showing dislocations with different densities formed in (a) the bottom, (b) the middle, (c) the top of the as-deposited HEA parts.
Fig. 6. Simulated results of the single-track CoCrFeMnNi HEA parts: (a) the temperature field distribution, (b) the thermal cycle curve of one node, and (c) the relationship between grain size and Rc for different positions labeled as 1, 2, 3 and 4 in.(a).
Fig. 7. Simulated results in the single-track CoCrFeMnNi HEA parts: (a) the stress field distribution, (b) the schematic diagram of stress-induced dislocation generation, and (c) ρ and thermal stress for different test points labeled as 1, 2, 3 and 4 in.(a).
Fig. 8. (a) The relationship between grain size, dislocation density and micro-hardness, and (b) strength contributions offered from multiple strengthening mechanisms in the single-track CoCrFeMnNi HEA parts.
[1] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[2] |
H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toyserkani, Mater. Des. 144 (2018) 98-128.
DOI URL |
[3] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[4] |
A.J. Clarke, Nature 576 (2019) 41-42.
DOI URL PMID |
[5] |
D.Y. Zhang, D. Qiu, M.A. Gibson, Y.F. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576 (2019) 91-95.
DOI URL |
[6] |
J. Hou, W. Chen, Z.E. Chen, K. Zhang, A.J. Huang, J. Mater. Sci. Technol. 48 (2020) 63-71.
DOI URL |
[7] |
Q. Yan, B. Song, Y.S. Shi, J. Mater. Sci. Technol. 41 (2020) 199-208.
DOI URL |
[8] | A. Harooni, M. Iravani, A. Khajepour, J.M. King, A. Khalifa, A.P. Gerlich, Addit. Manuf. 22 (2018) 537-547. |
[9] |
H. Tan, M.L. Guo, A.T. Clare, X. Lin, J. Chen, W.D. Huang, J. Mater. Sci. Technol. 35 (2019) 2027-2037.
DOI URL |
[10] | D.C. Ren, S.J. Li, H. Wang, W.T. Hou, Y.L. Hao, W. Jin, R. Yang, R.D.K. Misra, L.E. Murr, J. Mater. Sci. Technol. 35 (2019) 285-294. |
[11] |
P.B. Vila, J. Gussone, A. Stark, N. Schell, J. Haubrich, G. Requena, Nat. Commun. 9 (2018) 3426.
DOI URL |
[12] |
S.K. Jiao, X. Cheng, S.X. Shen, X. Wang, B. He, D. Liu, H.M. Wang, J. Alloys. Compd. 821 (2020), 153125.
DOI URL |
[13] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL PMID |
[14] |
T.C. Lin, C.Z. Cao, M. Sokoluk, L. Jiang, X. Wang, J.M. Schoenung, E.J. Lavernia, X.C. Li, Nat. Commun. 10 (2019) 4124.
DOI URL |
[15] |
H. Xiao, M.P. Cheng, L.J. Song, J. Mater. Sci. Technol. 60 (2021) 216-221.
DOI URL |
[16] |
Y.C. Zhang, L. Yang, W.Z. Lu, D. Wei, T. Meng, S.N. Gao, Mater. Sci. Eng. A 771 (2020), 138580.
DOI URL |
[17] |
H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci. Technol. 34 (2018) 1799-1804.
DOI URL |
[18] |
X.Y. Gao, Y.Z. Lu, Mater. Lett. 236 (2019) 77-80.
DOI URL |
[19] |
Y. Chew, G.J. Bi, Z.G. Zhu, F.L. Ng, F. Weng, S.B. Liu, S.M.L. Nai, B.Y. Lee, Mater. Sci. Eng. A 744 (2019) 137-144.
DOI URL |
[20] |
S. Xiang, J.F. Li, H.W. Luan, A. Amar, S.Y. Lu, K. Li, L. Zhang, X. Liu, G.M. Le, X.Y. Wang, F.S. Qu, W. Zhang, D. Wang, Q. Li, Mater. Sci. Eng. A 743 (2019) 412-417.
DOI URL |
[21] |
J.F. Li, S. Xiang, H.W. Luan, A. Amar, X. Liu, S.Y. Lu, Y.Y. Zeng, G.M. Le, X.Y. Wang, F.S. Qu, C.L. Jiang, G.N. Yang, J. Mater. Sci. Technol. 35 (2019) 2430-2434.
DOI URL |
[22] |
P. Chen, S. Li, Y.H. Zhou, M. Yan, M.M. Attallah, J. Mater. Sci. Technol. 43 (2020) 40-43.
DOI URL |
[23] |
X.G. Yang, Y. Zhou, S.Q. Xi, Z. Chen, P. Wei, C. He, T.T. Li, Y. Gao, H.J. Wu, Mater. Sci. Eng. A 767 (2019), 138394.
DOI URL |
[24] |
Y.F. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka, A. Chiba, J. Mater. Sci. Technol. 50 (2020) 162-170.
DOI URL |
[25] |
T.A. Rodrigues, V. Duarte, J.A. Avila, T.G. Santos, R.M. Miranda, J.P. Oliveira, Addit. Manuf. 27 (2019) 440-450.
DOI |
[26] |
S.L. Li, J. Hu, W.Y. Chen, J.Y. Yu, M.M. Li, Y.D. Wang, Scripta Mater. 178 (2020) 245-250.
DOI URL |
[27] |
W.A. Witzen, A.T. Polonsky, T.M. Pollock, I.J. Beyerlein, Int. J. Plasticity 131 (2020), 102709.
DOI URL |
[28] |
S.N. Cao, D.D. Gu, Q.M. Shi, J. Alloys. Compd. 692 (2017) 758-769.
DOI URL |
[29] | H.G. Li, T.L. Lee, W. Zheng, Y.Z. Lu, H.B. C. Yin, J. X. Yang, Y. J. Huang, J. F. Sun,Mater. Lett. 263 (2020), 127247. |
[30] | G. Vastola, G. Zhang, Q.X. Pei, Y.W. Zhang, Addit. Manuf. 12 (2016) 231-239. |
[31] |
Y.K. Kim, J.H. Choe, K.A. Lee, J. Alloys. Compd. 805 (2019) 680-691.
DOI URL |
[32] |
H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Sci. Eng. A 593 (2014) 170-177.
DOI URL |
[33] |
Z.P. Tong, H.L. Liu, J.F. Jiao, W.F. Zhou, Y. Yang, X.D. Ren, J. Mater. Process. Tech. 285 (2020), 116806.
DOI URL |
[34] |
X.Q. Zhang, H.B. Chen, L.M. Xu, J.J. Xu, X.K. Ren, X.Q. Chen, Mater. Des. 183 (2019), 108105.
DOI URL |
[35] |
X.D. Zhang, N. Hansen, A. Godfrey, X.X. Huang, Acta Mater. 114 (2016) 176-183.
DOI URL |
[36] |
Z.Q. Fu, W.P. Chen, H.M. Wen, D.L. Zhang, Z. Chen, B.L. Zheng, Y.Z. Zhou, E.J. Lavernia, Acta Mater. 107 (2016) 59-71.
DOI URL |
[37] |
J.Y. Shao, G. Yu, X.L. He, S.X. Li, R. Chen, Y. Zhao, Opt. Laser Technol. 119 (2019), 105662.
DOI URL |
[38] |
M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, M.S. Dargusch, Acta Mater. 168 (2019) 261-274.
DOI URL |
[39] |
Z.Y. Liu, Z. Wang, J. Mater. Sci. Technol. 34 (2018) 2116-2124.
DOI URL |
[40] |
T.R. Smith, J.D. Sugar, C.S. Marchi, J.M. Schoenung, Acta Mater. 164 (2019) 728-740.
DOI URL |
[41] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[42] |
S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Mater. Des. 133 (2017) 122-127.
DOI URL |
[43] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scripta Mater. 154 (2018) 20-24.
DOI URL |
[44] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 444-458.
DOI URL |
[45] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scripta Mater. 68 (2013) 526-529.
DOI URL |
[46] |
R.S. Ganji, P.S. Karthik, K.B.S. Rao, K.V. Rajulapati, Acta Mater. 125 (2017) 58-68.
DOI URL |
[47] |
Y.H. Xie, Y.F. Luo, T. Xia, W. Zeng, J. Wang, J.M. Liang, D.S. Zhou, D.L. Zhang, J. Alloys. Compd. 819 (2020), 152937.
DOI URL |
[48] |
F. Siska, J. Cech, P. Hausild, H. Hadraba, Z. Chlup, R. Husak, L. Stratil, Mater. Sci. Eng. A 784 (2020), 139297.
DOI URL |
[49] | D. Tabor, J. Inst. Met. 79 (1951) 1-18. |
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[3] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
[4] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[5] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
[6] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
[7] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[8] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[9] | Junjie Wang, Shangshu Wu, Shu Fu, Sinan Liu, Zhiqiang Ren, Mengyang Yan, Shuangqin Chen, Si Lan, Horst Hahn, Tao Feng. Nanocrystalline CoCrFeNiMn high-entropy alloy with tunable ferromagnetic properties [J]. J. Mater. Sci. Technol., 2021, 77(0): 126-130. |
[10] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
[11] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[12] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[13] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[14] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[15] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||