J. Mater. Sci. Technol. ›› 2021, Vol. 77: 209-216.DOI: 10.1016/j.jmst.2020.09.049
• Research Article • Previous Articles Next Articles
Yuping Duana,*(), Huifang Panga, Xin Wena, Xuefeng Zhangb, Tongmin Wanga,*(
)
Received:
2020-07-30
Revised:
2020-09-17
Accepted:
2020-09-20
Published:
2021-06-30
Online:
2020-11-21
Contact:
Yuping Duan,Tongmin Wang
About author:
tmwang@dlut.edu.cn (T. Wang).Yuping Duan, Huifang Pang, Xin Wen, Xuefeng Zhang, Tongmin Wang. Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent[J]. J. Mater. Sci. Technol., 2021, 77: 209-216.
Fig. 1. (a) XRD patterns and (b) the calculated crystallinity of raw mixture components and mechanical-alloyed FeCoNiAlCr0.9 HEA samples (P0, P20, P30, P40 and P50).
Fig. 4. Conductivity of the mechanical-alloyed FeCoNiAlCr0.9 HEA samples. The inset represents the changing curves of the mass ratios of C and O elements.
Fig. 6. Variation curves of calculated reflection loss (RL) with frequency under different thickness and simulations of absorber thickness and corresponding peak frequency based on λ/4 wavelength theory: (a) P0, (b) P20, (c) P30, (d) P40 and (e) P50.
Fig. 7. Frequency dependence of microwave reflection loss (RL) with 2 mm thickness for the Px (x = 0, 20, 30, 40 and 50) samples. With the increased PCA volume, the effective bandwidth (RL < - 10 dB) gets enhanced.
Fig. 8. Calculated attenuation constant α of the Px (x = 0, 20, 30, 40 and 50) samples at 1-18 GHz. Due to the existence of skin effect, the particles with larger thickness are not suitable for EM absorbent.
[1] | F. Boccardi, R.W. Heath, A. Lozano, T.L. Marzetta, P. Popovski, IEEE Commun. Mag. 52 (2014) 74-80. |
[2] | A. Gohil, H. Modi, S.K. Patel, 5G Technology of Mobile Communication: A Survey, in: 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), IEEE, 2013, pp.288-292. |
[3] | J. Luo, P. Shen, W. Yao, C. Jiang, J. Xu, Synthesis, Nanoscale Res. Lett. 11 (2016) 141. |
[4] |
J. Qiu, T. Qiu, Carbon 81 (2015) 20-28.
DOI URL |
[5] |
X. Yang, Y. Duan, Y. Zeng, H. Pang, G. Ma, X. Dai, J. Mater. Chem. C 8 (2020) 1583-1590.
DOI URL |
[6] |
T.A. Listyawan, H. Lee, N. Park, U. Lee, J. Mater. Sci. Technol. 57 (2020) 123-130.
DOI URL |
[7] | H. Yang, J. Li, X. Pan, W.Y. Wang, H. Kou, J. Wang, J. Mater. Sci. Technol. (2020), http://dx.doi.org/10.1016/j.jmst.2020.02.069. |
[8] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J.A. Smith, H. Li, H. Zhao, P.K. Liaw, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
[9] |
C. Dai, T. Zhao, C. Du, Z. Liu, D. Zhang, J. Mater. Sci. Technol. 46 (2020) 64-73.
DOI URL |
[10] |
P. Li, S. Wang, Y. Xia, X. Hao, H. Dong, J. Mater. Sci. Technol. 45 (2020) 59-69.
DOI URL |
[11] |
Y. Zhang, J. Li, X. Wang, Y. Lu, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 35 (2019) 902-906.
DOI URL |
[12] |
Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater. Sci. Technol. 35 (2019) 369-373.
DOI URL |
[13] | H. Jiang, L. Jiang, D. Qiao, Y. Lu, T. Wang, Z. Cao, T. Li, J. Mater. Sci. Technol. 33 (2017) 712-717. |
[14] |
Y. Lu, Z. Tang, B. Wen, G. Wang, S. Wu, T. Wang, Y. Zhang, Z. Chen, Z. Cao, T. Li, J. Mater. Sci. Technol. 34 (2018) 344-348.
DOI URL |
[15] |
C. Liu, H. Wang, S. Zhang, H. Tang, A. Zhang, J. Alloys Compd. 583 (2014) 162-169.
DOI URL |
[16] |
C.M. Lin, H.L. Tsai, Intermetallics 19 (2011) 288-294.
DOI URL |
[17] |
Y. Shi, B. Yang, P.K. Liaw, Metals 7 (2017) 43.
DOI URL |
[18] |
P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Mater. Des. 134 (2017) 426-433.
DOI URL |
[19] |
Y. Zou, H. Ma, R. Spolenak, Nat. Commun. 6 (2015) 7748.
DOI URL PMID |
[20] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[21] |
P. Yang, Y. Liu, X. Zhao, J. Cheng, H. Li, J. Mater. Res. 31 (2016) 2398-2406.
DOI URL |
[22] |
B. Zhang, Y. Duan, X. Wen, G. Ma, T. Wang, X. Dong, H. Zhang, N. Jia, Y. Zeng, J. Alloys Compd. 790 (2019) 179-188.
DOI URL |
[23] |
B. Zhang, Y. Duan, X. Yang, G. Ma, T. Wang, X. Dong, Y. Zeng, Intermetallics 117 (2020), 106678.
DOI URL |
[24] |
H. Wu, D. Lan, B. Li, L. Zhang, Y. Fu, Y. Zhang, H. Xing, Compos. Part B: Eng. 179 (2019), 107524.
DOI URL |
[25] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[26] |
M. Vaidya, G.M. Muralikrishna, B.S. Murty, J. Mater. Res. 34 (2019) 664-686.
DOI URL |
[27] | S. Zhou, Q. Dong, Super Permanent Magnets—Permanent Magnetic Material of Rare-Earth and Iron System, Metallurgy Industry Publishing, Beijing,2004. |
[28] |
A. Nouri, P. Hodgson, C. Wen, Acta Biomater. 6 (2010) 1630-1639.
DOI URL PMID |
[29] |
S. Kleiner, F. Bertocco, F. Khalid, O. Beffort, Mater. Chem. Phys. 89 (2005) 362-366.
DOI URL |
[30] |
B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, X. Dong, RSC Adv. 8 (2018) 14936-14946.
DOI URL |
[31] |
B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, X. Dong, Mater. Des. 149 (2018 )173-183.
DOI URL |
[32] |
N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, ACS Appl. Mater. Interfaces 9 (2017) 2973-2983.
DOI URL |
[33] |
X. Wang, R. Gong, P. Li, L. Liu, W. Cheng, Mater. Sci. Eng. A 466 (2007) 178-182.
DOI URL |
[34] |
Y. Duan, Y. Cui, B. Zhang, G. Ma, W. Tongmin, J. Alloys Compd. 773 (2019) 194-201.
DOI URL |
[35] |
Y. Duan, X. Wen, B. Zhang, G. Ma, T. Wang, J. Magn. Magn. Mater. 497 (2020), 165947.
DOI URL |
[36] |
S.S. Kim, S.T. Kim, Y.C. Yoon, K.S. Lee, J. Appl. Phys. 97 (2005), 10F905.
DOI URL |
[37] |
A.J. Stoyanov, E.C. Fischer, H. Überall, J. Appl. Phys. 89 (2001) 4486-4490.
DOI URL |
[38] |
G. Li, Y. Cui, N. Zhang, X. Wang, J.L. Xie, Phys. B: Condens. Matter 481 (2016) 1-7.
DOI URL |
[39] |
Y. Wu, M. Han, Z. Tang, L. Deng, J. Appl. Phys. 115 (2014), 163902.
DOI URL |
[40] |
Y. Duan, S. Gu, Z. Zhang, M. Wen, J. Alloys Compd. 542 (2012) 90-96.
DOI URL |
[41] | R. Raymond, J. Mathematics Phys. 41 (1962) 1-41. |
[42] |
R. Yang, B. Wang, J. Xiang, C. Mu, C. Zhang, F. Wen, C. Wang, C. Su, Z. Liu, ACS Appl. Mater. Interfaces 9 (2017) 12673-12679.
DOI URL |
[43] |
R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J. Shi, J. He, Chem. Eng. J. 337 (2018) 242-255.
DOI URL |
[44] |
S.J. Yan, L. Zhen, C.Y. Xu, J.T. Jiang, W.Z. Shao, J. Phys. D: Appl. Phys. 43 (2010), 245003.
DOI URL |
[45] |
N. Tang, W. Zhong, H. Jiang, Z. Han, W. Zou, Y. Du, Solid State Commun. 132 (2004) 71-74.
DOI URL |
[46] |
Y. Duan, Y. Cui, B. Zhang, G. Ma, W. Tongmin, J. Alloys Compd. 773 (2019) 194-201.
DOI URL |
[47] |
H. Pang, A.M. Abdalla, R.P. Sahu, Y. Duan, I.K. Puri, J. Mater. Sci. 53 (2018) 16288-16302.
DOI URL |
[48] |
X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater. Interfaces 8 (2016) 6101-6109.
DOI URL |
[49] |
Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, Y. Du, ACS Appl. Mater. Interfaces 9 (2017) 34243-34255.
DOI URL |
[50] |
J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang, J. Yuan, ACS Appl. Mater. Interfaces 8 (2016) 22615-22622.
DOI URL |
[51] |
F. Wen, F. Zhang, J. Xiang, W. Hu, S. Yuan, Z. Liu, J. Magn. Magn. Mater. 343 (2013) 281-285.
DOI URL |
[52] |
G. Tong, Q. Hu, W. Wu, W. Li, H. Qian, Y. Liang, J. Mater. Chem. 22 (2012) 17494-17504.
DOI URL |
[1] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[2] | Jinkui Fan, Qiang Zheng, Rui Bao, Jianhong Yi, Juan Du. High performance Sm-Co powders obtained by crystallization from ball milled amorphous state [J]. J. Mater. Sci. Technol., 2020, 37(0): 181-184. |
[3] | Yuanyuan Chen, Zhangping Hu, Yifei Xu, Jiangyong Wang, Peter Schützendübe, Yuan Huang, Yongchang Liu, Zumin Wang. Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2019, 35(4): 512-519. |
[4] | Shulin Lü, Pan Xiao, Du Yuan, Kun Hu, Shusen Wu. Preparation of Al matrix nanocomposites by diluting the composite granules containing nano-SiCp under ultrasonic vibaration [J]. J. Mater. Sci. Technol., 2018, 34(9): 1609-1617. |
[5] | G.B. Shan, Y.Z. Chen, M.M. Gong, H. Dong, B. Li, F. Liu. Influence of Al2O3 particle pinning on thermal stability of nanocrystalline Fe [J]. J. Mater. Sci. Technol., 2018, 34(4): 599-604. |
[6] | Hansang Kwon, Marc Leparoux, Akira Kawasaki. Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering [J]. J. Mater. Sci. Technol., 2014, 30(8): 736-742. |
[7] | S.S. Chen, X.J. Luo, D.W. Shi2),H.Li, C.P. Yang. Observation of an EPIR Effect in Nd1-xSrxMnO3 Ceramics with Secondary Phases [J]. J. Mater. Sci. Technol., 2013, 29(8): 737-741. |
[8] | M. Abo-Elsoud. Kinetics and Nanostructure Dependence of High Temperature-Low Stress Creep of Al and Al-0.3%Fe [J]. J Mater Sci Technol, 2012, 28(1): 27-33. |
[9] | Shunsheng Chen Changping Yang Lingfang Xu Shaolong Tang. Ball Milling Synthesis and Property of Nd0:7Sr0:3MnO3 Manganites [J]. J Mater Sci Technol, 2010, 26(8): 721-724. |
[10] | Ruijing ZHANG, Ke YANG, Tianying XIONG. Research on a New Process of Preparation for Nano-SiO2 with High Activity and Mesopores [J]. J Mater Sci Technol, 2004, 20(03): 353-356. |
[11] | Jun SHEN, Jianfei SUN, Faming ZHANG. Synthesis and Characterizations of Nanocrystalline WC-Co Composite Powders by a Unique Ball Milling Process [J]. J Mater Sci Technol, 2004, 20(01): 7-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||