J. Mater. Sci. Technol. ›› 2021, Vol. 92: 75-87.DOI: 10.1016/j.jmst.2021.03.043
• Invited Review • Previous Articles Next Articles
Yihe Zhanga,*(), Li Zhanga, Guotao Yangb,c, Yalin Yaob,c, Xu Weib,c, Tianchi Panb,c, Juntao Wud, Moufeng Tianb,c, Penggang Yind,*(
)
Received:
2020-12-08
Revised:
2021-03-04
Accepted:
2021-03-12
Published:
2021-11-30
Online:
2021-05-08
Contact:
Yihe Zhang,Penggang Yin
About author:
pgyin@buaa.edu.cn (P. Yin).Yihe Zhang, Li Zhang, Guotao Yang, Yalin Yao, Xu Wei, Tianchi Pan, Juntao Wu, Moufeng Tian, Penggang Yin. Recent advances in recyclable thermosets and thermoset composites based on covalent adaptable networks[J]. J. Mater. Sci. Technol., 2021, 92: 75-87.
Fig. 1. (a) Degradation and repolymerization of the epoxy vitrimer via transesterification. (b) A schematic view of the closed-loop recycling paradigm for epoxy vitrimer CFRP composites [41].
Fig. 3. Demonstration of thermal recyclability and re-mending ability of DAPUs by hot-compression molding of DAPU100 (two thin disks or granule) on a metal mold at 180 °C for 10 min [21].
Fig. 5. (a) Synthetic route of EN-VAN-AP; (b) Dissociative mechanism of imine bond. (c) Tensile properties of wet sample after different periods of heating at 120 °C [65].
Fig. 6. (a) Mechanical recycling of the dynamic epoxy network; (b) Thermoformation of cured composite laminate; (c) Partial dissolution of CFR-epoxy composite in a thiol-containing solution, where the carbon-fiber in contact with the solution was recovered unaltered; (d) Mechanical recycling of dynamic epoxy composites [70].
Fig. 7. The reversibility (a) and solubility (b) of the cured PBNRs. The recycling and regeneration (c) and degradation (d) processes of the GF/PBNR composites with dimensions of 90 mm × 90 mm × 3 mm (L × W × H) in ethanol at room temperature [74].
Fig. 8. (a) Representative digital camera images of the degradable process, immersed in 0.5 mol/L H2SO4 at 90 °C for (i) 0 h, (ⅱ) 0.5 h, (ⅲ) 1 h, and (ⅳ) 2 h [38]; (b) The resin’s first-stage depolymerization time (t1) in different 1 M HCl/THF solutions and the contact angles of their corresponding H2O/THF solutions [75]; (c) The resin’s degradation status in 10 mL 1 M HCl/THF solution at different time [75].
Scheme 2. Schematic pictures of synthesis of acetal-containing epoxy resins, preparation and degradation of acetal-containing CFRPs, and recovery of carbon fibers [39].
Degradable bonds or structures | Structures and cleavage mechanism | Tensile strength (MPa) | Young'smodulus (MPa) | Tg ( °C) | Recycling (Reprocessing) | Ref. |
---|---|---|---|---|---|---|
Transesterification | ![]() | 55 | 1800 | 80 | 240 °C/3 min | [ |
69.2 ± 2.1 | 1950±100 | 187 | — | [ | ||
6.08-16.62 | — | 65 | 10 MPa /160 °C /1 h | [ | ||
1.7-2.8 | 1.8-2.8 | 12.4-25.0 | 5 MPa /120 °C /30 min | [ | ||
1.05-1.99 | 2 | -21.6 -6.3 | 15 MPa /200 °C/20 min | [ | ||
1.57-52.1 | 0.46-1970 | -30-72 | — | [ | ||
DA/retro-DA chemistry | ![]() | 53 | 2500 | 128.5-136 | 125 °C/20 min | [ |
11.5-49.8 | 69.5-229.7 | 90-148 | 160-180 °C /5-20 min | [ | ||
Imine bonds | ![]() | 60.6 ± 1.8 | 2598± 41 | 127 | 0.3 MPa/170 °C/30 min | [ |
0.63—20.50 | — | 40.5-75.7 | 15 Mpa/ 80 °C /5 min | [ | ||
11—65 | 14-1050 | 47-120 | — | [ | ||
10-64 | 0.13-1.0 | 55-135 | 45 MPa / 121 °C/1 min | [ | ||
Disulfide metathesis | ![]() | 1.8-11.4 | 1.4-106.3 | -8.3-10.5 | 10 MPa/200 °C/10 min | [ |
13-15 | 207-1122 | 43-224 | 20 MPa /210 °C/2 h | [ | ||
0.23 | - | about -36 | 4.5 MPa/25 °C /24 h | [ | ||
9.67±0.89 | 5.04±0.05 | 29.8 | 10 MPa/ Sunlight/5 min | [ | ||
Dynamic B-O bonds | ![]() | 1.75-12.74 | 2.72-112.45 | -55 | 0.4 kPa/R.T./24 h | [ |
7-13 | 42-57 | -50-200 | 10 MPa/200 °C/20 min | [ | ||
17.8-32.9 | 559-768 | 26-47 | hot press /80 °C | [ | ||
5.95-31.96 | 63.9-331.7 | 6-57 | 4 MPa/60 °C/15 min | [ | ||
28 | 1.8 | 98 | 1.2 MPa/ 180-200 °C /15 s | [ | ||
Hemiaminals/hexahydrotriazines | ![]() | 80 ± 6 | 2000± 148 | 151 | — | [ |
124.7 | 4800 | 200.1 | about 3 MPa/200 °C /2 h | [ | ||
Acetal linkages | ![]() | 85 ± 7 | 3131± 282 | 169 | — | [ |
71.3 ± 8 | 3349± 37 | 184 | — | [ | ||
27.2-33.3 | 0.8-1.1 | 66-71 | 15 MPa /150 °C/10 min | [ | ||
17.3-45.8 | 1843-2766 | 103-113 | 10 MPa/150-180 °C/20-30 min | [ |
Table 1 Summary of mechanical properties, Tg, and reprocessing results of various CANs-based thermosets and thermoset composites.
Degradable bonds or structures | Structures and cleavage mechanism | Tensile strength (MPa) | Young'smodulus (MPa) | Tg ( °C) | Recycling (Reprocessing) | Ref. |
---|---|---|---|---|---|---|
Transesterification | ![]() | 55 | 1800 | 80 | 240 °C/3 min | [ |
69.2 ± 2.1 | 1950±100 | 187 | — | [ | ||
6.08-16.62 | — | 65 | 10 MPa /160 °C /1 h | [ | ||
1.7-2.8 | 1.8-2.8 | 12.4-25.0 | 5 MPa /120 °C /30 min | [ | ||
1.05-1.99 | 2 | -21.6 -6.3 | 15 MPa /200 °C/20 min | [ | ||
1.57-52.1 | 0.46-1970 | -30-72 | — | [ | ||
DA/retro-DA chemistry | ![]() | 53 | 2500 | 128.5-136 | 125 °C/20 min | [ |
11.5-49.8 | 69.5-229.7 | 90-148 | 160-180 °C /5-20 min | [ | ||
Imine bonds | ![]() | 60.6 ± 1.8 | 2598± 41 | 127 | 0.3 MPa/170 °C/30 min | [ |
0.63—20.50 | — | 40.5-75.7 | 15 Mpa/ 80 °C /5 min | [ | ||
11—65 | 14-1050 | 47-120 | — | [ | ||
10-64 | 0.13-1.0 | 55-135 | 45 MPa / 121 °C/1 min | [ | ||
Disulfide metathesis | ![]() | 1.8-11.4 | 1.4-106.3 | -8.3-10.5 | 10 MPa/200 °C/10 min | [ |
13-15 | 207-1122 | 43-224 | 20 MPa /210 °C/2 h | [ | ||
0.23 | - | about -36 | 4.5 MPa/25 °C /24 h | [ | ||
9.67±0.89 | 5.04±0.05 | 29.8 | 10 MPa/ Sunlight/5 min | [ | ||
Dynamic B-O bonds | ![]() | 1.75-12.74 | 2.72-112.45 | -55 | 0.4 kPa/R.T./24 h | [ |
7-13 | 42-57 | -50-200 | 10 MPa/200 °C/20 min | [ | ||
17.8-32.9 | 559-768 | 26-47 | hot press /80 °C | [ | ||
5.95-31.96 | 63.9-331.7 | 6-57 | 4 MPa/60 °C/15 min | [ | ||
28 | 1.8 | 98 | 1.2 MPa/ 180-200 °C /15 s | [ | ||
Hemiaminals/hexahydrotriazines | ![]() | 80 ± 6 | 2000± 148 | 151 | — | [ |
124.7 | 4800 | 200.1 | about 3 MPa/200 °C /2 h | [ | ||
Acetal linkages | ![]() | 85 ± 7 | 3131± 282 | 169 | — | [ |
71.3 ± 8 | 3349± 37 | 184 | — | [ | ||
27.2-33.3 | 0.8-1.1 | 66-71 | 15 MPa /150 °C/10 min | [ | ||
17.3-45.8 | 1843-2766 | 103-113 | 10 MPa/150-180 °C/20-30 min | [ |
[1] | A. Kalaiyarasan, P. Ramesh, P. Paramasivam, Study of advanced composite ma-terials in aerospace application, Int.J. Sci. Res. Mech. Mater. Eng. 1 (2017) 25-34. |
[2] | R. Sonnenschein, K. Gajdosova, I. Holly, FRP composites and their using in the construction of bridges, Procedia Eng 161 (2016) 477-482. |
[3] | A.G. Koniuszewska, J.W. Kaczmar, Application of polymer based composite materials in transportation, Prog.Rubber, Plast. Recycl. Technol. 32 (2016) 1-24. |
[4] | L. Granado, S. Kempa, L.J. Gregoriades, F. Brüning, T. Bernhard, V. Flaud, E. Anglaret, N. Fréty, Improvements of the epoxy-copper adhesion for mi-croelectronic applications, ACS Appl.Electron. Mater. 8 (2019) 1498-1505. |
[5] | P. Liu, C.Y. Barlow, Wind turbine blade waste in 2050, Waste Manag 62 (2017) 229-240. |
[6] | T. Deng, Y. Liu, X. Cui, Y. Yang, S. Jia, Y. Wang, C. Lu, D. Li, R. Cai, X. Hou, Cleavage of C-N bonds in carbon fiber/epoxy resin composites, Green Chem 17 (2015) 2141-2145. |
[7] | G.G. Matielli Rodrigues, J.M. Faulstich de Paiva, J. Braga do Carmo, V.R. Botaro, Recycling of carbon fibers inserted in composite of DGEBA epoxy matrix by thermal degradation, Polym. Degrad. Stabil. 109 (2014) 50-58. |
[8] | K. Ragaert, L. Delva, K. Van Geem, Mechanical and chemical recycling of solid plastic waste, Waste Manag 69 (2017) 24-58. |
[9] | X. Li, R. Bai, J. McKechnie, Environmental and financial performance of me-chanical recycling of carbon fibre reinforced polymers and comparison with conventional disposal routes, J.Clean. Prod. 127 (2016) 451-460. |
[10] | Y. Yang, R. Boom, B. Irion, D.-J. van Heerden, P. Kuiper, H. de Wit, Recycling of composite materials, Chem. Eng. Process. 51 (2012) 53-68. |
[11] | S. Gharde, B. Kandasubramanian, Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP), Environ. Technol. Inno. 14 (2019) 100311. |
[12] | D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Silica-like malleable mate-rials from permanent organic networks, Science 6058 (2011) 965-968. |
[13] | T. Liu, C. Hao, S. Zhang, X. Yang, L. Wang, J. Han, Y. Li, J. Xin, J. Zhang, A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry, Macromolecules 51 (2018) 5577-5585. |
[14] | J. Han, T. Liu, C. Hao, S. Zhang, B. Guo, J. Zhang, A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer, Macromolecules 51 (2018) 6789-6799. |
[15] | X. Yang, L. Guo, X. Xu, S. Shang, H. Liu, A fully bio-based epoxy vitrimer: self-healing, triple-shape memory and reprocessing triggered by dynamic co-valent bond exchange, Mater. Design 186 (2020) 108248. |
[16] | C. He, S. Shi, D. Wang, B.A. Helms, T.P. Russell, Poly(oxime-ester) vitrimers with catalyst-free bond exchange, J.Am. Chem. Soc. 141 (2019) 13753-13757. |
[17] | Z. Feng, J. Hu, H. Zuo, N. Ning, L. Zhang, B. Yu, M. Tian, Photothermal-induced self-healable and reconfigurable shape memory bio-based elastomer with re-cyclable ability, ACS Appl. Mater. Interfaces 11 (2019) 1469-1479. |
[18] | M. Delahaye, J.M. Winne, F.E. Du Prez, Internal catalysis in covalent adapt-able networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry, J.Am. Chem. Soc. 141 (2019) 15277-15287. |
[19] | Y. Min, S. Huang, Y. Wang, Z. Zhang, B. Du, X. Zhang, Z. Fan, Sonochemical transformation of epoxy-amine thermoset into soluble and reusable poly-mers, Macromolecules 48 (2015) 316-322. |
[20] | Q. Tian, Y.C. Yuan, M.Z. Rong, M.Q. Zhang, A thermally remendable epoxy resin, J.Mater. Chem. 19 (2009) 1289-1296. |
[21] | S. Yu, R. Zhang, Q. Wu, T. Chen, P. Sun, Bio-inspired high-performance and recyclable cross-linked polymers, Adv.Mater. 25 (2013) 4912-4917. |
[22] | X. Kuang, G. Liu, X. Dong, X. Liu, J. Xu, D. Wang, Facile fabrication of fast re-cyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker, J.Polym. Sci. Pol. Chem. 53 (2015) 2094-2103. |
[23] | H. Memon, H. Liu, M.A. Rashid, L. Chen, Q. Jiang, L. Zhang, Y. Wei, W. Liu, Y. Qiu, Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability, Macromolecules 53 (2020) 621-630. |
[24] | F. Song, Z. Li, P. Jia, M. Zhang, C. Bo, G. Feng, L. Hu, Y. Zhou, Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds, J. Mater. Chem. A 7 (2019) 13400-13410. |
[25] | P. Taynton, C. Zhu, S. Loob, R. Shoemaker, J. Pritchard, Y. Jin, W. Zhang, Re-healable polyimine thermosets: polymer composition and moisture sen-sitivity, Polym.Chem. 46 (2016) 7052-7056. |
[26] | P. Taynton, H. Ni, C. Zhu, K. Yu, S. Loob, Y. Jin, H.J. Qi, W. Zhang, Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks, Adv.Mater. 28 (2016) 2904-2909. |
[27] | J.-H. Chen, W.-Q. Yuan, Y.-D. Li, Y.-X. Weng, J.-B. Zeng, Malleable and sustain-able poly(ester amide) networks synthesized via melt condensation polymer-ization, ACS Sustain. Chem. Eng. 18 (2019) 15147-15153. |
[28] | M. Ozawa, M. Shibata, Reprocessable bismaleimide-diamine thermosets based on disulfide bonds, React Funct.Polym. 146 (2020) 104404. |
[29] | Z.Q. Lei, H.P. Xiang, Y.J. Yuan, M.Z. Rong, M.Q. Zhang, Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic ex-change of disulfide bonds, Chem.Mater. 26 (2014) 2038-2046. |
[30] | W.M. Xu, M.Z. Rong, M. Q., Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer, J. Mater. Chem. A 27 (2016) 10683-10690. |
[31] | A.P. Bapat, B.S. Sumerlin, A. Sutti, Bulk network polymers with dynamic B-O bonds: healable and reprocessable materials, Mater.Horiz. 7 (2020) 694-714. |
[32] | Z. Wang, Y. Gu, M. Ma, M. Chen, Strong, Reconfigurable, and recyclable ther-mosets cross-linked by polymer-polymer dynamic interaction based on com-modity thermoplastics, Macromolecules 53 (2020) 956-964. |
[33] | C. Bao, Y.-J. Jiang, H. Zhang, X. Lu, J. Sun, Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines, Adv. Funct. Mater. 28 (2018) 1800560. |
[34] | H. Guo, L. Yue, G. Rui, I. Manas-Zloczower, Recycling poly(ethylene-vinyl acetate) with improved properties through dynamic cross-linking, Macro-molecules 53 (2019) 458-464. |
[35] | W.A. Ogden, Z. Guan, Recyclable, Strong, and Highly malleable thermosets based on boroxine networks, J.Am. Chem. Soc. 140 (2018) 6217-6220. |
[36] | C. Bao, Z. Guo, H. Sun, J. Sun, Nitrogen-coordinated boroxines enable the fab-rication of mechanically robust supramolecular thermosets capable of healing and recycling under mild conditions, ACS Appl. Mater. Interfaces 11 (2019) 9478-9486. |
[37] | J.M. Garcia, G.O. Jones, K. Virwani, B.D. McCloskey, D.J. Boday, G.M. ter Hu-urne, H.W. Horn, D.J. Coady, A.M. Bintaleb, A.M. Alabdulrahman, F. Alse-wailem, H.A. Almegren, J.L. Hedrick, Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines, Science 6185 (2014) 732-735. |
[38] | S. You, S. Ma, J. Dai, Z. Jia, X. Liu, J. Zhu, Hexahydro-s-triazine: a trial for acid-degradable epoxy resins with high performance, ACS Sustain.Chem. Eng. 6 (2017) 4683-4689. |
[39] | A. Yamaguchi, T. Hashimoto, Y. Kakichi, M. Urushisaki, T. Sakaguchi, K. Kawabe, K. Kondo, H. Iyo, Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: synthesis, properties, and chemical recycling, J.Polym. Sci. Pol. Chem. 53 (2015) 1052-1059. |
[40] | T. Hashimoto, H. Meiji, M. Urushisaki, T. Sakaguchi, K. Kawabe, C. Tsuchida, K. Kondo, Degradable and chemically recyclable epoxy resins containing ac-etal linkages: synthesis, properties, and application for carbon fiber-rein-forced plastics, J.Polym. Sci. Pol. Chem. 50 (2012) 3674-3681. |
[41] | K. Yu, Q. Shi, M.L. Dunn, T. Wang, H.J. Qi, Carbon fiber reinforced ther-moset composite with near 100% recyclability, Adv.Funct. Mater. 33 (2016) 6098-6106. |
[42] | F.I. Altuna, C.E. Hoppe, R.J.J. Williams, Epoxy vitrimers with a covalently bonded tertiary amine as catalyst of the transesterification reaction, Eur.Polym. J. 113 (2019) 297-304. |
[43] | M. Capelot, D. Montarnal, F. Tournilhac, L. Leibler, Metal-catalyzed transes-terification for healing and assembling of thermosets, J.Am. Chem. Soc. 134 (2012) 7664-7667. |
[44] | L. Lu, J. Pan, G. Li, Recyclable high-performance epoxy based on transesterifi-cation reaction, J. Mater. Chem. A 40 (2017) 21505-21513. |
[45] | F.I. Altuna, C.E. Hoppe, R.J.J. Williams, Epoxy vitrimers: the effect of transes-terification reactions on the network structure, Polymers 10 (2018) 43. |
[46] | A. Li, J. Fan, G. Li, Recyclable Epoxy thermoset shape memory polymers with high stress and energy output via facile UV-curing, J. Mater. Chem. A 24 (2018) 11479-11487. |
[47] | Y.Y. Li, T. Liu, S. Zhang, L. Shao, M.E. Fei, H. Yu, J.W. Zhang, Catalyst-free vitrimer elastomers based on a dimer acid: robust mechanical performance, adaptability and hydrothermal recyclability, Green Chem 22 (2020) 870-881. |
[48] | A.-C. Albertsson, M. Hakkarainen, Designed to degrade, Science 6365 (2017) 872-873. |
[49] | Q. Shi, K. Yu, M.L. Dunn, T. Wang, H.J. Qi, Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers, Macromolecules 49 (2016) 5527-5537. |
[50] | X. Kuang, Y. Zhou, Q. Shi, T. Wang, H.J. Qi, Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated ex-change reactions, ACS Sustain.Chem. Eng. 7 (2018) 9189-9197. |
[51] | Q. Shi, K. Yu, X. Kuang, X. Mu, C.K. Dunn, M.L. Dunn, T. Wang, H.J. Qi, Recy-clable 3D printing of vitrimer epoxy, Mater.Horiz. 4 (2017) 598-607. |
[52] | H. Zhang, C. Cai, W. Liu, D. Li, J. Zhang, N. Zhao, J. Xu, Recyclable poly-dimethylsiloxane network crosslinked by dynamic transesterification reaction, Sci.Rep. 7 (2017) 11833. |
[53] | J. M. Craven, Cross-linked thermally reversible polymers produced from con-densation polymers with pendant furan groups cross-linked with maleimides, US Patent, No. 3435003, 1969. |
[54] | J. Li, G. Zhang, L. Deng, K. Jiang, S. Zhao, Y. Gao, R. Sun, C. Wong, Thermally reversible and self-healing novolac epoxy resins based on Diels-Alder chem-istry, J.Appl. Polym. Sci. 132 (2015) 42167. |
[55] | J. Zhao, R. Xu, G. Luo, J. Wu, H. Xia, A self-healing, re-moldable and bio-compatible crosslinked polysiloxane elastomer, J. Mater. Chem. B 5 (2016) 982-989. |
[56] | M. Lejeail, H.R. Fischer, Development of a completely recyclable glass fiber-re-inforced epoxy thermoset composite, J.Appl. Polym. Sci. 138 (2021) 49690. |
[57] | Y.-J. Peng, X. He, Q. Wu, P.-C. Sun, C.-J. Wang, X.-Z. Liu, A new recyclable crosslinked polymer combined polyurethane and epoxy resin, Polymer 149 (2018) 154-163. |
[58] | M. Li, R. Zhang, X. Li, Q. Wu, T. Chen, P. Sun, High-performance recy-clable cross-linked polyurethane with orthogonal dynamic bonds: The molec-ular design, microstructures, and macroscopic properties, Polymer 148 (2018) 127-137. |
[59] | Y. Shen, N. Xu, Y.A. Adraro, B. Wang, Y. Liu, W. Yuan, X. Xu, Y. Huang, Z. Hu, Imine or secondary amine-derived degradable polyaminal: low-cost matrix resin with high performance, ACS Sustain.Chem. Eng. 8 (2020) 1943-1953. |
[60] | Z. Feng, B. Yu, J. Hu, H. Zuo, J. Li, H. Sun, N. Ning, M. Tian, L. Zhang, Mul-tifunctional vitrimer-like polydimethylsiloxane (pdms): recyclable, self-heal-able, and water-driven malleable covalent networks based on dynamic imine bond, Ind.Eng. Chem. Res. 58 (2019) 1212-1221. |
[61] | R. Mo, J. Hu, H. Huang, X. Sheng, X. Zhang, Tunable, self-healing and corro-sion inhibiting dynamic epoxy-polyimine network built by post-crosslinking, J. Mater. Chem. A 7 (2019) 3031-3038. |
[62] | C. Zhu, C. Xi, W. Doro, T. Wang, X. Zhang, Y. Jin, W. Zhang, Tuning the physi-cal properties of malleable and recyclable polyimine thermosets: the effect of solvent and monomer concentration, RSC Adv 76 (2017) 48303-48307. |
[63] | P. Taynton, K. Yu, R.K. Shoemaker, Y. Jin, H.J. Qi, W. Zhang, Heator wa-ter-driven malleability in a highly recyclable covalent network polymer, Adv.Mater. 26 (2014) 3938-3942. |
[64] | D.A. Kissounko, P. Taynton, C. Kaffer, New material: vitrimers promise to im-pact composites, Reinf.Plast. 62 (2018) 162-166. |
[65] | S. Zhao, M.M. Abu-Omar, Recyclable and malleable epoxy thermoset bearing aromatic imine bonds, Macromolecules 51 (2018) 9816-9824. |
[66] | S. Wang, S. Ma, Q. Li, X. Xu, B. Wang, W. Yuan, S. Zhou, S. You, J. Zhu, Facile in situ preparation of high-performance epoxy vitrimer from renewable re-sources and its application in nondestructive recyclable carbon fiber compos-ite, Green Chem 21 (2019) 1484-1497. |
[67] | S. Wang, S. Ma, Q. Li, W. Yuan, B. Wang, J. Zhu, Robust, fire-safe, monomer-re-covery, highly malleable thermosets from renewable bioresources, Macro-molecules 51 (2018) 8001-8012. |
[68] | X. Xu, S. Ma, J. Wu, J. Yang, B. Wang, S. Wang, Q. Li, J. Feng, S. You, J. Zhu, High-performance, command-degradable, antibacterial schiffbase epoxy ther-mosets: synthesis and properties, J. Mater. Chem. A 25 (2019) 15420-15431. |
[69] | G.C. Tesoro, V. Sastri, Reversible crosslinking in epoxy resins. I. feasibility studies, J.Appl. Polym. Sci. 39 (1990) 1425-1437. |
[70] | A.R. de Luzuriaga, R. Martin, N. Markaide, A. Rekondo, G. Cabañero, J. Ro-dríguez, I. Odriozola, Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites, Mater. Horiz. 3 (2016) 241-247. |
[71] | R. Martin, A. Rekondo, A.R. de Luzuriaga, G. Cabañero, H.J. Grande, I. Odri-ozola, The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges, J. Mater. Chem. A 16 (2014) 5710-5715. |
[72] | O.R. Cromwell, J. Chung, Z. Guan, Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds, J.Am. Chem. Soc. 137 (2015) 6492-6495. |
[73] | M. Röttger, T. Domenech, R. v. d. Weegen, A. Breuillac, R. Nicolaÿ, L. Leibler, High-performance vitrimers from commodity thermoplastics through diox-aborolane metathesis, Science 6333 (2017) 62-65. |
[74] | S. Wang, X. Xing, X. Zhang, X. Wang, X. Jing, Room-temperature fully recy-clable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds, J. Mater. Chem. A 23 (2018) 10868-10878. |
[75] | Y. Yuan, Y. Sun, S. Yan, J. Zhao, S. Liu, M. Zhang, X. Zheng, L. Jia, Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites, Nat.Commun. 8 (2017) 14657. |
[76] | Z. Xu, Y. Liang, X. Ma, S. Chen, C. Yu, Y. Wang, D. Zhang, M. Miao, Recy-clable thermoset hyperbranched polymers containing reversible hexahydro-s-triazine, Nat.Sustain. 3 (2019) 29-34. |
[77] | Y. Jin, C. Yu, R.J. Denman, W. Zhang, Recent advances in dynamic covalent chemistry, Chem.Soc. Rev. 42 (2013) 6634-6654. |
[78] | S. Ma, J. Wei, Z. Jia, T. Yu, W. Yuan, Q. Li, S. Wang, S. You, R. Liu, J. Zhu, Read-ily recyclable, high-performance thermosetting materials based on a lign-in-derived spiro diacetal trigger, J. Mater. Chem. A 7 (2019) 1233-1243. |
[79] | W. Yuan, S. Ma, S. Wang, Q. Li, B. Wang, X. Xu, K. Huang, J. Chen, S. You, J. Zhu, Synthesis of fully bio-based diepoxy monomer with dicyclo diacetal for high-performance, readily degradable thermosets, Eur.Polym. J. 117 (2019) 200-207. |
[80] | Q. Li, S. Ma, S. Wang, W. Yuan, X. Xu, B. Wang, K. Huang, J. Zhu, Facile cata-lyst-free synthesis, exchanging, and hydrolysis of an acetal motif for dynamic covalent networks, J. Mater. Chem. A 30 (2019) 18039-18049. |
[81] | Q. Li, S. Ma, S. Wang, Y. Liu, M.A. Taher, B. Wang, K. Huang, X. Xu, Y. Han, J. Zhu, Green and facile preparation of readily dual-recyclable thermosetting polymers with superior stability based on asymmetric acetal, Macromolecules 53 (2020) 1474-1485. |
[82] | L. Zhang, Z. Zhao, Z. Dai, L. Xu, F. Fu, T. Endo, X. Liu, Unexpected healability of an ortho-blocked polybenzoxazine resin, ACS Macro Lett (2019) 506-511. |
[83] | X. Wu, X. Yang, R. Yu, X.-J. Zhao, Y. Zhang, W. Huang, A facile access to stiffepoxy vitrimers with excellent mechanical properties via siloxane equilibra-tion, J. Mater. Chem. A 22 (2018) 10184-10188. |
[84] | P. Chakma, Z.A. Digby, M.P. Shulman, L.R. Kuhn, C.N. Morley, J.L. Sparks, D. Konkolewicz, Anilinium salts in polymer networks for materials with me-chanical stability and mild thermally induced dynamic properties, ACS Macro Lett 8 (2019) 95-100. |
[85] | X. An, R.H. Aguirresarobe, L. Irusta, F. Ruipérez, J.M. Matxain, X. Pan, N. Aram-buru, D. Mecerreyes, H. Sardon, J. Zhu, Aromatic diselenide crosslinkers to enhance the reprocessability and self-healing of polyurethane thermosets, Polym. Chem. 23 (2017) 3641-3646. |
[86] | L. Jiang, Q. Liu, Y. Lei, Y. Wang, Y. Zhao, J. Lei, Carbon-nanotube-filled catalyst-free thermoset polyurea composites towards achieving recyclabil-ity, weldability and permanent shape reconfiguration, Mater.Chem. Front. 8 (2019) 1601-1612. |
[87] | L. Jiang, Z. Liu, Y. Lei, Y. Yuan, B. Wu, J. Lei, Sustainable thermosetting polyurea vitrimers based on a catalyst-free process with reprocessability, per-manent shape reconfiguration and self-healing performance, ACS Appl.Polym. Mater. 12 (2019) 3261-3268. |
[88] | Y. Zhang, H. Ying, K.R. Hart, Y. Wu, A.J. Hsu, A.M. Coppola, T.A. Kim, K. Yang, N.R. Sottos, S.R. White, J. Cheng, Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds, Adv.Mater. 35 (2016) 7646-7651. |
[89] | Y.X. Lu, F. Tournilhac, L. Leibler, Z. Guan, Making insoluble polymer networks malleable via olefin metathesis, J.Am. Chem. Soc. 134 (2012) 8424-8427. |
[90] | S. Wang, Z. Liu, L. Zhang, Y. Guo, J. Song, J. Lou, Q. Guan, C. He, Z. You, Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane ad-hesive, Mater.Chem. Front. 9 (2019) 1833-1839. |
[91] | S. Gao, Y. Liu, S. Feng, Z. Lu, Reprocessable and degradable thermoset with high Tg cross-linked via Si-O-Ph bonds,J. Mater. Chem. A 29 (2019) 17498-17504. |
[92] | S. Debnath, R.R. Ujjwal, U. Ojha, Self-healable and recyclable dynamic cova-lent networks based on room temperature exchangeable hydrazide michael adduct linkages, Macromolecules 51 (2018) 9961-9973. |
[93] | Z. Liu, C. Yu, C. Zhang, Z. Shi, J. Yin, Revisiting acetoacetyl chemistry to build malleable cross-linked polymer networks via transamidation, ACS Macro Lett 8 (2019) 233-238. |
[94] | L. Li, X. Chen, J.M. Torkelson, Reprocessable polymer networks via thiourethane dynamic chemistry: recovery of cross-link density after recy-cling and proof-of-principle solvolysis leading to monomer recovery, Macro-molecules 52 (2019) 8207-8216. |
[95] | J. Huang, L. Zhang, Z. Tang, S. Wu, B. Guo, Reprocessable and robust crosslinked elastomers via interfacial C-N transalkylation of pyridinium, Com-pos.Sci. Technol. 168 (2018) 320-326. |
[96] | A. Erice, A.R. de Luzuriaga, J.M. Matxain, F. Ruipérez, J.M. Asua, H.-J. Grande, A. Rekondo, Reprocessable and recyclable crosslinked poly(urea-urethane)s based on dynamic amine/urea exchange, Polymer 145 (2018) 127-136. |
[97] | R.L. Snyder, D.J. Fortman, G.X. De Hoe, M.A. Hillmyer, W.R. Dichtel, Repro-cessable acid-degradable polycarbonate vitrimers, Macromolecules 51 (2018) 389-397. |
[98] | Y.X. Lu, Z. Guan, Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds, J.Am. Chem. Soc. 134 (2012) 14226-14231. |
[99] | P.R. Christensen, A.M. Scheuermann, K.E. Loeffler, B.A. Helms, Closed-loop re-cycling of plastics enabled by dynamic covalent diketoenamine bonds, Nat.Chem. 11 (2019) 442-448. |
[100] | J. Shi, T. Zheng, B. Guo, J. Xu, Solvent-free thermo-reversible and self-healable crosslinked polyurethane with dynamic covalent networks based on phenol-carbamate bonds, Polymer 181 (2019) 121788. |
[101] | W. Denissen, I.D. Baere, W.V. Paepegem, L. Leibler, J. Winne, F.E.D. Prez, Viny-logous urea vitrimers and their application in fiber reinforced composites, Macromolecules 51 (2018) 2054-2064. |
[102] | P. Shieh, W.X. Zhang, K.E.L. Husted, S.L. Kristufek, B.Y. Xiong, D.J. Lundberg, J. Lem, D. Veysset, Y.C. Sun, K.A. Nelson, D.L. Plata, J.A. Johnson, Cleavable comonomers enable degradable, recyclable thermoset plastics, Nature 7817 (2020) 542-547. |
[103] | R. Baruah, A. Kumar, R.R. Ujjwal, S. Kedia, A. Ranjan, U. Ojha, Recyclable thermosets based on dynamic amidation and aza-michael addition chemistry, Macromolecules 49 (2016) 7814-7824. |
[104] | S. Delpierre, B. Willocq, G. Manini, V. Lemaur, J. Goole, P. Gerbaux, J. Cornil, P. Dubois, J.-M. Raquez, Simple approach for a self-healable and stiffpoly-mer network from iminoboronate-based boroxine chemistry, Chem.Mater. 31 (2019) 3736-3744. |
[105] | H. Zhang, D. Wang, N. Wu, C. Li, C. Zhu, N. Zhao, J. Xu, Recyclable, self-healing, thermadapt triple-shape memory polymers based on dual dynamic bonds, ACS Appl. Mater. Interfaces 12 (2020) 9833-9841. |
[106] | S. Hu, X. Chen, J.M. Torkelson, ACS Sustain. Chem. Eng. 2019 (2019) 10025-10034. |
[107] | X. Chen, L. Li, T. Wei, D.C. Venerus, J.M. Torkelson, Reprocessable polyhy-droxyurethane network composites: effect of filler surface functionality on cross-link density recovery and stress relaxation, ACS Appl. Mater. Interfaces 11 (2019) 2398-2407. |
[108] | Z. Jiang, A. Bhaskaran, H.M. Aitken, I.C.G. Shackleford, L.A. Connal, Using syn-ergistic multiple dynamic bonds to construct polymers with engineered prop-erties, Macromol. Rapid Commun. 40 (2019) 1900038. |
[109] | J. Jung, H.J. Cho, D. Kim, S.S. Hwang, J. Won, Degradable natural lacquer (urushi) adhesives using a reversible polymer based on hemiaminal dynamic covalent networks, ChemistrySelect 23 (2018) 6665-6670. |
[110] | J. Zhao, R. Xu, G. Luo, J. Wu, H. Xia, Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility, Polym.Chem. 47 (2016) 7278-7286. |
[111] | Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang, J. Xiao, Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocom-posite, Sci. Adv. 4 (2018) eaaq0508. |
[112] | Z. Chen, Y.C. Sun, J. Wang, H.J. Qi, T. Wang, H.E. Naguib, Flexible, reconfig-urable, and self-healing tpu/vitrimer polymer blend with copolymerization triggered by bond exchange reaction, ACS Appl. Mater. Interfaces 12 (2020) 8740-8750. |
[113] | K. Liu, Y. Jiang, Z. Bao, X. Yan, Skin-inspired electronics enabled by supramolecular polymeric materials, CCS Chem 4 (2019) 431-447. |
[114] | H. Jia, S.-Y. Gu, Remote and efficient infrared induced self-healable stretchable substrate for wearable electronics, Eur.Polym. J. 126 (2020) 109542. |
[115] | S. Wang, Y. Wu, J. Dai, N. Teng, Y. Peng, L. Cao, X. Liu, Making organic coatings greener: renewable resource, solvent-free synthesis, UV curing and repairabil-ity, Eur.Polym. J. 123 (2020) 109439. |
[116] | J. Han, T. Liu, S. Zhang, C. Hao, J. Xin, B. Guo, J. Zhang, Hyperbranched polymer assisted curing and repairing of an epoxy coating, Ind.Eng. Chem. Res. 58 (2019) 6466-6475. |
[117] | C. Hao, T. Liu, S. Zhang, L. Brown, R. Li, J. Xin, T. Zhong, L. Jiang, J. Zhang, A high-lignin-content, removable, and glycol-assisted repairable coating based on dynamic covalent bonds, ChemSusChem 12 (2019) 1049-1058. |
[118] | B. Zhang, K. Kowsari, A. Serjouei, M.L. Dunn, Q. Ge, Reprocessable thermosets for sustainable three-dimensional printing, Nat.Commun. 9 (2018) 1831. |
[1] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[2] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[3] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[4] | Yanhui Li, Xingjie Jia, Wei Zhang, Yan Zhang, Guoqiang Xie, Zhiyong Qiu, Junhua Luan, Zengbao Jiao. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65(0): 171-181. |
[5] | Bin Liu, Juanli Zhao, Yuchen Liu, Jianqi Xi, Qian Li, Huimin Xiang, Yanchun Zhou. Application of high-throughput first-principles calculations in ceramic innovation [J]. J. Mater. Sci. Technol., 2021, 88(0): 143-157. |
[6] | S.M. Liang, H.M. Ji, X.W. Li. A high-strength and high-toughness nacreous structure in a deep-sea Nautilus shell: Critical role of platelet geometry and organic matrix [J]. J. Mater. Sci. Technol., 2021, 88(0): 189-202. |
[7] | Sheng Ding, Yuanfeng Wang, Jianna Li, Shiguo Chen. Progress and prospects in chitosan derivatives: Modification strategies and medical applications [J]. J. Mater. Sci. Technol., 2021, 89(0): 209-224. |
[8] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[9] | Yao Jiang, Yuehui He, Haiyan Gao. Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 89-104. |
[10] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[11] | Ming Gao, Ke Yang, Lili Tan, Zheng Ma. Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bi-direction drawing [J]. J. Mater. Sci. Technol., 2021, 81(0): 88-96. |
[12] | Weiming Yang, Xinfa Sun, Haishun Liu, Changfeng Yu, Wenyu Li, Akihisa Inoue, Daniel Şopu, Jürgen Eckert, Chunguang Tang. Structural homology of the strength for metallic glasses [J]. J. Mater. Sci. Technol., 2021, 81(0): 123-130. |
[13] | Diangeng Cai, Xiaotong Zhao, Lei Yang, Renxian Wang, Gaowu Qin, Da-fu Chen, Erlin Zhang. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81(0): 13-25. |
[14] | Jingjing Liu, Shuai Zhu, Xiangyu Chen, Jie Xu, Lu Zhang, Kai Yan, Wei Chen, Honghui Cheng, Shumin Han. Superior electrochemical performance of La-Mg-Ni-based alloys with novel A2B7-A7B23 biphase superlattice structure [J]. J. Mater. Sci. Technol., 2021, 80(0): 128-138. |
[15] | Ruiqing Lu, Shuwei Zheng, Jie Teng, Jiamin Hu, Dingfa Fu, Jianchun Chen, Guodong Zhao, Fulin Jiang, Hui Zhang. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach [J]. J. Mater. Sci. Technol., 2021, 80(0): 150-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||