J. Mater. Sci. Technol. ›› 2021, Vol. 92: 69-74.DOI: 10.1016/j.jmst.2021.03.031
• Research Article • Previous Articles Next Articles
Yonggang Fana,b, Cong Wanga,*
Received:
2021-02-21
Revised:
2021-03-07
Accepted:
2021-03-31
Published:
2021-11-30
Online:
2021-05-08
Contact:
Cong Wang
About author:
* E-mail address: wangc@smm.neu.edu.cn (C. Wang).Yonggang Fan, Cong Wang. Growth kinetics of interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal[J]. J. Mater. Sci. Technol., 2021, 92: 69-74.
Fig. 1. Relationship between standard Gibbs free energy and different brazing temperatures of the possible chemical reactions occuring at the CNB/Cu-Sn-Ti interface
Fig. 2. Typical interfacial microstructure and EDS (energy dispersive spectroscopy) elemental mapping images and line scans analysis of CBN/Cu-Sn-Ti composites with different brazing temperatures for 30 minutes: (a) 1153 K, (b) magnified image of (a), (c) line scanning image of (b); (d) 1173 K, (e) magnified image of (d), (f) line scanning image of (e); (g) 1193 K, (h) magnified image of (g), (i) line scanning image of (h); (j) 1223 K, (k) magnified image of (j), (l) line scanning image of (k). The distribution of green, blue, red, cyan and magenta lines represents the trend of Cu, Sn, Ti, N, B at the interface.
Fig. 3. (a) TEM bright field (BF) micrograph showing the interfacial microstructure between CBN and Cu-Sn-Ti at 1223 K (30 minutes), and (b), (c) and (d) are selected area diffraction patterns of red, yellow and green dashed circle areas, respectively.
Fig. 4. Typical morphologies of newly formed compounds on the surface of CBN grains brazed at 1153 K to 1223 K with holding time from 0 to 30 minutes: (a)-(d) 1153 K, 0-30 minutes; (e)-(h) 1173 K, 0-30 minutes; (i)-(l) 1193 K, 0-30 minutes and (m)-(p) 1223 K, 0-30 minutes.
Fig. 5. Relationship between thickness of reaction layer and brazing time at different brazing temperatures. (a) Curves of reaction layer thickness as a function of holding time; (b) effect of brazing temperature on the growth factor of the reaction layer.
[1] |
Y. Wang, K. Lei, Y. Ruan, W. Dong, Int. J. Refract. Met. Hard Mater. 54 (2016) 98-103.
DOI URL |
[2] |
X. Xu, Y. Yu, H. Huang, Wear 255 (2003) 1421-1426.
DOI URL |
[3] |
Q. Li, J. Xu, H. Su, W. Lei, Int. J. Adv. Manuf. Tech. 80 (2015) 1173-1180.
DOI URL |
[4] |
K. Bouacha, M.A. Yallese, S. Khamel, S. Belhadi, Int. J. Refract. Met. Hard Mater. 45 (2014) 160-178.
DOI URL |
[5] | Z. Shi, S. Malkin, CIRP Ann-Manuf, Technol 52 (2003) 267-270. |
[6] |
F.C. Gift, W.Z. Misiolek, E. Force, J. Tribol 126 (2004) 795-801.
DOI URL |
[7] |
S. Liu, B. Xiao, H. Xiao, L. Meng, Z. Zhang, H. Wu, Surf. Coat. Technol. 286 (2016) 376-382.
DOI URL |
[8] |
Q.L. Li, J.H. Xu, H.H. Su, X. Tong, Mater. Sci. Forum 770 (2014) 45-49.
DOI URL |
[9] |
Z.W. Yang, C.L. Wang, Y. Wang, L.X. Zhang, D.P. Wang, J.C. Feng, J. Mater. Sci. Technol. 33 (2017) 1392-1401.
DOI |
[10] |
W.F. Ding, J.H. Xu, M. Shen, Y.C. Fu, B. Xiao, Mater. Sci. Technol. 22 (2006) 105-109.
DOI URL |
[11] | J. Zhang, J.Y. Liu, T.P. Wang, J. Mater. Sci. Technol. 34 (2017) 139-145. |
[12] |
X. Ma, C. Li, W. Zhang, Mater. Sci. Eng. A. 392 (2005) 394-402.
DOI URL |
[13] |
A. Ghosh, A.K. Chattopadhyay, Int. J. Refract. Met. Hard Mater. 68 (2017) 96-103.
DOI URL |
[14] |
S.X. Liu, B. Xiao, Z.Y. Zhang, D.Z. Duan, Int. J. Refract. Met. Hard Mater. 54 (2016) 54-59.
DOI URL |
[15] |
W.F. Ding, J.H. Xu, M. Shen, H.H. Su, Y.C. Fu, B. Xiao, Mater. Sci. Eng. A. 430 (2006) 301-306.
DOI URL |
[16] |
Y. Fan, J. Fan, C. Wang, Metall. Mater. Trans. B. 50 (2019) 601-606.
DOI URL |
[17] |
Y. Fan, J. Fan, C. Wang, J. Mater. Sci. Technol. 68 (2021) 35-39.
DOI URL |
[18] |
Y. Fan, J. Fan, C. Wang, Metall. Mater. Trans. B. 50 (2019) 2517-2522.
DOI URL |
[19] |
Y. Fan, J. Fan, C. Wang, Metall. Mater. Trans. B. 51 (2020) 880-884.
DOI URL |
[20] |
J. Wang, C. Liu, C. Leinenbach, U.E. Klotz, Calphad. 35 (2011) 82-94.
DOI URL |
[21] |
Q.L. Li, H.Z. Ren, W.N. Lei, K. Ding, L. Ding, S.R. Zhang, Int. J. Adv. Manuf. Tech. 95 (2017) 2111-2118.
DOI URL |
[22] |
Q. Miao, W. Ding, Y. Zhu, Z. Chen, J. Xu, C. Yang, Ceram. Int. 42 (2016) 13723-13737.
DOI URL |
[23] |
M.A. Umer, P.H. Sub, J.L. Dong, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A. 552 (2012) 151-156.
DOI URL |
[24] |
Y. Wang, X.M. Qiu, D.Q. Sun, S.Q. Yin, Int. J. Refract. Met. Hard Mater. 29 (2011) 293-297.
DOI URL |
[25] |
W.C. Li, S.T. Lin, C. Liang, Metall. Mater. Trans. A. 33 (2002) 2163-2172.
DOI URL |
[26] | M. Brochu, M.D. Pugh, R.a.L. Drew, Mater.Sci. Eng. A. 374 (2004) 34-42. |
[27] | W. Jost, Diffusion in Solids, Liquids, and Gases, Academic Press, Inc., New York, 1960. |
[28] | W.F. Ding, J.H. Xu, M. Shen, Y.C. Fu, B. Xiao, Int.J. Refract.Met.HardMater. 24 (2006) 432-436. |
[29] | R.W. Xu, Joining of Silicon Nitride to Metals Using Active Brazing, University of Illinois, Chicago, 1994 Ph.D. Thesis. |
[30] | R.J. Wasilewski, G.L. Kehl, J. Inst. Met 83 (1954) 94-104. |
[31] |
Q. Miao, W. Ding, Y. Zhu, Z. Chen, Y. Fu, Mater. Des. 98 (2016) 243-253.
DOI URL |
[1] | Peiru Yang, Chenxi Liu, Qianying Guo, Yongchang Liu. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 162-171. |
[2] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[3] | Zhipeng Long, Qiuyue Jiang, Jiantao Wang, Long Hou, Xing Yu, Yves Fautrelle, Zhongming Ren, Xi Li. Nucleation kinetics of paramagnetic and diamagnetic metal melts under a high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 165-170. |
[4] | Yonggang Fan, Junxiang Fan, Cong Wang. Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2021, 68(0): 35-39. |
[5] | Yanghuan Zhang, Pengpeng Wang, Zhonghui Hou, Zeming Yuan, Yan Qi, Shihai Guo. Structure and hydrogen storage characteristics of as-spun Mg-Y-Ni-Cu alloys [J]. J. Mater. Sci. Technol., 2019, 35(8): 1727-1734. |
[6] | Yonggang Fan, Junxiang Fan, Cong Wang. Brazing temperature-dependent interfacial reaction layer features between CBN and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2019, 35(10): 2163-2168. |
[7] | Zeming Yuan, Bangwen Zhang, Yanghuan Zhang, Shihai Guo, Xiaoping Dong, Dongliang Zhao. A comparison study of hydrogen storage properties of as-milled Sm5Mg41 alloy catalyzed by CoS2 and MoS2 nano-particles [J]. J. Mater. Sci. Technol., 2018, 34(10): 1851-1858. |
[8] | Yanghuan Zhang, Baowei Li, Huiping Ren, Tai Yang, Shihai Guo, Yan Qi, Dongliang Zhao. Hydrogen Storage Kinetics of Nanocrystalline and Amorphous LaMg12-Type Alloy-Ni Composites Synthesized by Mechanical Milling [J]. J. Mater. Sci. Technol., 2016, 32(3): 218-225. |
[9] | F.Q. Lang, H. Yamaguchi, H. Nakagawa, H. Sato. Solid-State Interfacial Reaction between Eutectic Au-Ge Solder and Cu/Ni(P)/Au Metalized Ceramic Substrate and Its Suppression [J]. J. Mater. Sci. Technol., 2015, 31(5): 445-452. |
[10] | W. Blum, J. Dvořák, P. Král, P. Eisenlohr, V. Sklenička. Correct Interpretation of Creep Rates: A Case Study of Cu [J]. J. Mater. Sci. Technol., 2015, 31(11): 1065-1068. |
[11] | Shuming Wang, Fenghua Kuang, Dazhan Zhang, Xu Zhou, Minghui Tang. Crystallization Behavior of Nd2O3 Doped Na2O-CaO-SiO2 Laser Glass-ceramics [J]. J. Mater. Sci. Technol., 2015, 31(11): 1158-1160. |
[12] | Taghi Dallali Isfahani, Jafar Javadpour, Alireza Khavandi, Massoud Goodarzi,Hamid Reza Rezaie. Nanocrystalline Growth Activation Energy of Zirconia Polymorphs Synthesized by Mechanochemical Technique [J]. J. Mater. Sci. Technol., 2014, 30(4): 387-393. |
[13] | Meiting Xie, Pengna Zhang, Kaikai Song. Thermal Stability and Transformation-mediated Deformability of Cu-Zr-Al-Ni Bulk Metallic Glass Composite [J]. J. Mater. Sci. Technol., 2013, 29(9): 868-872. |
[14] | Chenggang Tian, Chuanyong Cui, Ling Xu, Yuefeng Gu, Xiaofeng Sun. Dynamic Strain Aging in a Newly Developed Ni-Co-Base Superalloy with Low Stacking Fault Energy [J]. J. Mater. Sci. Technol., 2013, 29(9): 873-878. |
[15] | Ming Luo, Yawei Li, Shengli Jin, Shaobai Sang, Lei Zhao. Microstructural Evolution and Oxidation Resistance of Multi-walled Carbon Nanotubes in the Presence of Silicon Powder at High Temperatures [J]. J Mater Sci Technol, 2012, 28(7): 599-605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||