J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (10): 1851-1858.DOI: 10.1016/j.jmst.2018.01.012
Special Issue: Nanomaterials 2018
• Orginal Article • Previous Articles Next Articles
Zeming Yuanab(), Bangwen Zhanga, Yanghuan Zhangbc(
), Shihai Guob, Xiaoping Dongd, Dongliang Zhaob
Received:
2017-10-01
Revised:
2017-11-09
Accepted:
2017-11-27
Online:
2018-10-05
Published:
2018-11-01
Zeming Yuan, Bangwen Zhang, Yanghuan Zhang, Shihai Guo, Xiaoping Dong, Dongliang Zhao. A comparison study of hydrogen storage properties of as-milled Sm5Mg41 alloy catalyzed by CoS2 and MoS2 nano-particles[J]. J. Mater. Sci. Technol., 2018, 34(10): 1851-1858.
Sm5Mg41 + 5 wt.% M | Sm (wt.%) | Mg (wt.%) | Co (wt.%) | Mo (wt.%) | Fe (wt.%) |
---|---|---|---|---|---|
M = CoS2 | 40.84 ± 0.20 | 54.16 ± 0.27 | 2.39 ± 0.01 | 0 | 0 |
M = MoS2 | 40.84 ± 0.20 | 54.16 ± 0.27 | 0 | 3.00 ± 0.02 | 0 |
Table 1 The actual compositions of the Sm5Mg41 + 5 wt.% M (M = CoS2, MoS2) alloys measured by ICP.
Sm5Mg41 + 5 wt.% M | Sm (wt.%) | Mg (wt.%) | Co (wt.%) | Mo (wt.%) | Fe (wt.%) |
---|---|---|---|---|---|
M = CoS2 | 40.84 ± 0.20 | 54.16 ± 0.27 | 2.39 ± 0.01 | 0 | 0 |
M = MoS2 | 40.84 ± 0.20 | 54.16 ± 0.27 | 0 | 3.00 ± 0.02 | 0 |
Fig. 1. XRD profiles of the as-milled Sm5Mg41-5M (M = CoS2, MoS2) alloys before and after hydrogen absorption and desorption: (a) M = CoS2, (b) M = MoS2.
Fig. 2. FETEM micrographs and EDS mapping of the as-milled Sm5Mg41-5M (M = CoS2, MoS2) alloys after 5 hydriding and dehydriding cycles: (a-e) M = CoS2, (f-j) M = MoS2.
Fig. 3. SAED, TEM and HRTEM micrographs of the as-milled Sm5Mg41-5M (M = CoS2, MoS2) alloys after 5 hydriding and dehydriding cycles: (a) and (b) M = CoS2, (c) and (d) M = MoS2.
Fig. 4. The isothermal hydrogen absorption and desorption curves of the as-milled Sm5Mg41-5M (M = CoS2, MoS2) alloys in the cycle activation with hydrogenation reaction at 340 °C and 3 MPa, and hydrogenation reaction at 340 °C and 1 × 10-4 MPa: (a) and (c) M = CoS2; (b) and (d) M = MoS2.
Fig. 5. Isothermal hydrogenation kinetic curves of the as-milled Sm5Mg41-5M (M = CoS2, MoS2) alloys at different temperatures: (a) M = CoS2, (b) M = MoS2.
Fig. 6. Isothermal dehydrogenation kinetic curves of the as-milled Sm5Mg41-5M (M = CoS2, MoS2) alloys at different temperatures: (a) M = CoS2, (b) M = MoS2.
Fig. 7. JMA plots and Arrhenius plots for the dehydrogenation of the as-milled Sm5Mg41-5M (M = CoS2, MoS2) alloys at different temperatures: (a) M = CoS2, (b) M = MoS2.
Sm5Mg41-5M (M = CoS2,MoS2) | Plateau pressure (MPa) | Thermodynamic parameters | ||||
---|---|---|---|---|---|---|
340 °C | 360 °C | 380 °C | ΔH (kJ/mol) | ΔS (J/mol/K) | ||
M = CoS2 | Absorption | 0.250 | 0.418 | 0.674 | -82.689 | -161.536 |
Desorption | 0.242 | 0.408 | 0.654 | 82.600 | 161.163 | |
M = MoS2 | Absorption | 0.252 | 0.407 | 0.645 | -78.184 | -135.111 |
Desorption | 0.246 | 0.394 | 0.625 | 77.561 | 133.880 |
Table 2 Plateau pressures from the PCI curves at different temperatures and calculated enthalpy and entropy for hydrogen absorption and desorption process of Sm5Mg41-5M (M = CoS2, MoS2) alloys.
Sm5Mg41-5M (M = CoS2,MoS2) | Plateau pressure (MPa) | Thermodynamic parameters | ||||
---|---|---|---|---|---|---|
340 °C | 360 °C | 380 °C | ΔH (kJ/mol) | ΔS (J/mol/K) | ||
M = CoS2 | Absorption | 0.250 | 0.418 | 0.674 | -82.689 | -161.536 |
Desorption | 0.242 | 0.408 | 0.654 | 82.600 | 161.163 | |
M = MoS2 | Absorption | 0.252 | 0.407 | 0.645 | -78.184 | -135.111 |
Desorption | 0.246 | 0.394 | 0.625 | 77.561 | 133.880 |
Fig. 10. Temperature programmed desorption curve of the as-milled Sm5Mg41-5M (M = CoS2, MoS2) alloys after hydrogen absorption at a heating rate of 5 °C/min.
|
[1] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[2] | Jinkui Fan, Qiang Zheng, Rui Bao, Jianhong Yi, Juan Du. High performance Sm-Co powders obtained by crystallization from ball milled amorphous state [J]. J. Mater. Sci. Technol., 2020, 37(0): 181-184. |
[3] | Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties [J]. J. Mater. Sci. Technol., 2020, 38(0): 86-92. |
[4] | Shikai Wu, Ye Pan, Jie Lu, Ning Wang, Weiji Dai, Tao Lu. Effect of the addition of Mg, Ti, Ni on the decoloration performance of AlCrFeMn high entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35(8): 1629-1635. |
[5] | Yanghuan Zhang, Pengpeng Wang, Zhonghui Hou, Zeming Yuan, Yan Qi, Shihai Guo. Structure and hydrogen storage characteristics of as-spun Mg-Y-Ni-Cu alloys [J]. J. Mater. Sci. Technol., 2019, 35(8): 1727-1734. |
[6] | Yuanyuan Chen, Zhangping Hu, Yifei Xu, Jiangyong Wang, Peter Schützendübe, Yuan Huang, Yongchang Liu, Zumin Wang. Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2019, 35(4): 512-519. |
[7] | Shulin Lü, Pan Xiao, Du Yuan, Kun Hu, Shusen Wu. Preparation of Al matrix nanocomposites by diluting the composite granules containing nano-SiCp under ultrasonic vibaration [J]. J. Mater. Sci. Technol., 2018, 34(9): 1609-1617. |
[8] | G.B. Shan, Y.Z. Chen, M.M. Gong, H. Dong, B. Li, F. Liu. Influence of Al2O3 particle pinning on thermal stability of nanocrystalline Fe [J]. J. Mater. Sci. Technol., 2018, 34(4): 599-604. |
[9] | Min Zha, Hong-Min Zhang, Zhi-Yuan Yu, Xuan-He Zhang, Xiang-Tao Meng, Hui-Yuan Wang, Qi-Chuan Jiang. Bimodal microstructure - A feasible strategy for high-strength and ductile metallic materials [J]. J. Mater. Sci. Technol., 2018, 34(2): 257-264. |
[10] | Yanghuan Zhang, Baowei Li, Huiping Ren, Tai Yang, Shihai Guo, Yan Qi, Dongliang Zhao. Hydrogen Storage Kinetics of Nanocrystalline and Amorphous LaMg12-Type Alloy-Ni Composites Synthesized by Mechanical Milling [J]. J. Mater. Sci. Technol., 2016, 32(3): 218-225. |
[11] | F.Q. Lang, H. Yamaguchi, H. Nakagawa, H. Sato. Solid-State Interfacial Reaction between Eutectic Au-Ge Solder and Cu/Ni(P)/Au Metalized Ceramic Substrate and Its Suppression [J]. J. Mater. Sci. Technol., 2015, 31(5): 445-452. |
[12] | W. Blum, J. Dvořák, P. Král, P. Eisenlohr, V. Sklenička. Correct Interpretation of Creep Rates: A Case Study of Cu [J]. J. Mater. Sci. Technol., 2015, 31(11): 1065-1068. |
[13] | Shuming Wang, Fenghua Kuang, Dazhan Zhang, Xu Zhou, Minghui Tang. Crystallization Behavior of Nd2O3 Doped Na2O-CaO-SiO2 Laser Glass-ceramics [J]. J. Mater. Sci. Technol., 2015, 31(11): 1158-1160. |
[14] | Hansang Kwon, Marc Leparoux, Akira Kawasaki. Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering [J]. J. Mater. Sci. Technol., 2014, 30(8): 736-742. |
[15] | Taghi Dallali Isfahani, Jafar Javadpour, Alireza Khavandi, Massoud Goodarzi,Hamid Reza Rezaie. Nanocrystalline Growth Activation Energy of Zirconia Polymorphs Synthesized by Mechanochemical Technique [J]. J. Mater. Sci. Technol., 2014, 30(4): 387-393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||