J. Mater. Sci. Technol. ›› 2021, Vol. 91: 224-240.DOI: 10.1016/j.jmst.2021.03.017
• Invited Review • Previous Articles Next Articles
Jingjun Liua, Wei Fua, Yulong Liaoa, Jiajie Fanb, Quanjun Xianga,*()
Received:
2020-12-21
Revised:
2020-03-11
Accepted:
2020-03-17
Published:
2021-11-20
Online:
2021-11-20
Contact:
Quanjun Xiang
About author:
* E-mail address: xiangqj@uestc.edu.cn (Q. Xiang).Jingjun Liu, Wei Fu, Yulong Liao, Jiajie Fan, Quanjun Xiang. Recent advances in crystalline carbon nitride for photocatalysis[J]. J. Mater. Sci. Technol., 2021, 91: 224-240.
Fig. 3. (a) Synthetic process of the molten salt method [36]. (b) SEM and (c) TEM images of heptazine-based CCN sample and (d) H2 production of the samples and stability test of H2 production for g-CN-1 under visible light (>420 nm) irradiation using EtOH as the sacrificial agent [15].
Fig. 4. (a) Synthetic procedure of Cu-g-C3N4 composites and (b) SEM image of g-C3N4-CuCl2. (c) Degradation performances of different catalysts for RhB, MB, and MO [37]. (d) Schematic illustration of the KBr-confinement growth of KPCN and (e) Pd/KPCN [19]. (f) Schematic illustration of solid salt confinement strategy for the preparation of CPCN [38].
Fig. 5. (a) Schematic illustration for the preparation of the LOP g-CN samples [39]. (b) TEM images of the as-prepared samples: 530 LOP-CN, (c) the possible polymerization process of CCN, (d) TEM image of CCN and (e) CO2 adsorption isotherms of CCN and BCN [42].
Fig. 8. (a) Schematic diagram of the photocatalytic mechanism of BCN, CCN, and 0.1HCCN, (b) TEM of CCN and 0.1HCCN, (c) photoelectric AC curve and (d) the stability test of 0.1HCCN and CCN using TEOA/H2O solution as the sacrificial agents [36]. (e) The rate of photocatalytic formation of H2 in an aqueous solution of a mixture of ethanol and lactic acid as the original electron donor and an aqueous solution of original g-C3N4 and CCN [46].
Fig. 9. (a) Structure of the PHI-based CN with defects and (b) CO2 adsorption isotherms of CN, CN-M, and CN-M-0.01 at 273 K [20]. (c) Schematic diagram of CCN reaction with nitrogen vacancies and (d) Under visible light irradiation and simulated sunlight, the photocatalytic H2 of the prepared sample is released [53].
Fig. 10. (a) Illustration of defect engineering strategy, (b) schematic diagram of inferred belt structure in D-CCN, (c) transient photocurrent measurements for CCN and D-CCN (@0.2 V bias potential, relative to Ag/AgCl) and (d) wavelength dependence of H2 evolution rate of CCN and D-CCN (Inset: wavelength dependence of H2 evolution on D-CCN AQY (left axis) and UV/Vis light absorption spectrum of D-CCN (right axis) [45].
Fig. 11. (a) Schematic diagram of the tentative photocatalytic mechanism of HTCN under light irradiation: EC is the contact electric field of two materials; EB is a potential barrier at the interface (EB< EC in photocatalytic reaction). (b) HR-TEM image of HTCN. (c) Hydrogen evolution rate (HER) of the sample with 3% Pt as co-catalyst under 1 h light irradiation. (d) Structure model diagram of HCN, TCN, and HTCN [18].
Fig. 12. (a) Schematic diagrams of PTI/Li+ and the crystal structure of PTI/Li+Cl- Cl-crystal. (b) The relationship of the maximum H2 and O2 escape rate as the average surface area ratio. (c) PTI/Li+Cl- charge density along (0001) and {101¯0} crystal planes respectively. (d) SEM image of PTI/Li+Cl- [43].
Fig. 13. (a) Schematic diagram of liquid spalling from block-shaped crystalline carbonitrides to ultrathin nanocrystals. (b) Schematic illustration of carbon nitride nanosheets for H2 evolution under visible light. A single-layer atomic structure of (left) the pristine carbon nitrides with hydrogen bonds and (right) the CCN. H, C, and N atoms are denoted by small white, large gray, and light grey balls, respectively. (c) TEM image of exfoliated nanosheets after sonication for 10 h. and (d, e) AFM image of exfoliated nanosheets after sonication for 25 h [21]. (f) SEM and TEM images of CN16. (g) Photocatalytic H2 generation rate of CNt (t = 10, 12, 16) and CN540 samples [109].
Fig. 14. (a) TEM image of MTCN-6. (b) XRD patterns of tri-thiocyanuric acid, melamine, and MT-6. (c) UV-vis diffuse reflectance spectra (DRS). (d) K-M-plot. (e) Electronic bandgap structure of CN (Left) and MTCN-6 (Right). (f) H2-generation rate of CN and MTCN-X (X = 0.5, 3, 6, 12) [118].
Photocatalyst | Synthesis method | Structure | Co-catalyst | Photosource | Catalyst amount | RH2(μmol g-1 h-1) | RH2(CCN)RH2(BCN) | Quantum efficiency | Ref. |
---|---|---|---|---|---|---|---|---|---|
PTI nanosheets | Ionothermal synthesis,One-step liquid exfoliaton | Nanosheets | 2.2 wt% Pt,8 wt% H2PtCl6 | 300 W Xe lamp,dichroic mirror | - | - | 18 | - | [ |
CN16 | Microwave-assisted thermolysis | Nanosheets | 0.5 wt% Pt | 300 W Xe lampλ > 420 nm | 20.0 mg | 2025.0 | 6.75 | - | [ |
g-CN-1 | Molten salt method | Nanosheet to nanorodstructure with a porous structure | 3.0 wt% Pt | 300 W Xe lamp | 50.0 mg | 550.0 | 3.89 | 50.7%@405 nm | [ |
CCNNSs | Sonication-centrifugation process | As a silk veil,similar to graphene | 3.0 wt% Pt | 300 W Xe lamp λ>420nm | 50.0 mg | 1060.0 | 66.25 | 8.57% @420 nm | [ |
CCNNSs | Two-step calcination method | Nanosheets | - | 300 W Xe lampAM 1.5 | 50.0 mg | 9577.6 | 15.5 | 9.01% @420 nm | [ |
CCN550 | Molten salt method | Nanorod | 3.0 wt% Pt | 300 W Xe lamp | 50.0 mg | 660.0 | 18.3 | 6.8% a@420 nm | [ |
MTCN-6 | Heteroatom-doping | Rectangular shape | 1.0 wt% Pt | 300 W Xe lampλ > 420 nm | 40.0 mg | 1511.2 | 11 | 3.9% a@420 nm | [ |
D-CCN | Facile post-processing strategy | - | 3.0 wt% Pt | 300 W Xe lamp | 50.0 mg | 1280.0 | - | - | [ |
CPCN | Solid-salt-assisted growth strategy | - | 1.0 wt% Pt | 300 W Xe lampλ≥ 420 nm | - | 1356,0 | 18 | 11.4 %@420±5 nm | [ |
HTCN-500 | Molten salt method | Nanosheets | Pt and Ag/AgCl | 350 W Xe lamp | - | 890.0 | 15 | 26.7%@420 nm | [ |
0.1HCCN | Molten salt method | Nanorod | 3 wt% Pt | 350 W Xe lamp | 20.0 mg | 683.54 | 10 | 6.6%@420 nm | [ |
CNNVs-CTe | Facile alkali-assisted salts molten method | - | Me | full-spectrum andvisible light (λ > 420 nm) | - | 8723.8 | 18.48 | - | [ |
Table 1 Summary of photocatalytic H2 production from CCN.
Photocatalyst | Synthesis method | Structure | Co-catalyst | Photosource | Catalyst amount | RH2(μmol g-1 h-1) | RH2(CCN)RH2(BCN) | Quantum efficiency | Ref. |
---|---|---|---|---|---|---|---|---|---|
PTI nanosheets | Ionothermal synthesis,One-step liquid exfoliaton | Nanosheets | 2.2 wt% Pt,8 wt% H2PtCl6 | 300 W Xe lamp,dichroic mirror | - | - | 18 | - | [ |
CN16 | Microwave-assisted thermolysis | Nanosheets | 0.5 wt% Pt | 300 W Xe lampλ > 420 nm | 20.0 mg | 2025.0 | 6.75 | - | [ |
g-CN-1 | Molten salt method | Nanosheet to nanorodstructure with a porous structure | 3.0 wt% Pt | 300 W Xe lamp | 50.0 mg | 550.0 | 3.89 | 50.7%@405 nm | [ |
CCNNSs | Sonication-centrifugation process | As a silk veil,similar to graphene | 3.0 wt% Pt | 300 W Xe lamp λ>420nm | 50.0 mg | 1060.0 | 66.25 | 8.57% @420 nm | [ |
CCNNSs | Two-step calcination method | Nanosheets | - | 300 W Xe lampAM 1.5 | 50.0 mg | 9577.6 | 15.5 | 9.01% @420 nm | [ |
CCN550 | Molten salt method | Nanorod | 3.0 wt% Pt | 300 W Xe lamp | 50.0 mg | 660.0 | 18.3 | 6.8% a@420 nm | [ |
MTCN-6 | Heteroatom-doping | Rectangular shape | 1.0 wt% Pt | 300 W Xe lampλ > 420 nm | 40.0 mg | 1511.2 | 11 | 3.9% a@420 nm | [ |
D-CCN | Facile post-processing strategy | - | 3.0 wt% Pt | 300 W Xe lamp | 50.0 mg | 1280.0 | - | - | [ |
CPCN | Solid-salt-assisted growth strategy | - | 1.0 wt% Pt | 300 W Xe lampλ≥ 420 nm | - | 1356,0 | 18 | 11.4 %@420±5 nm | [ |
HTCN-500 | Molten salt method | Nanosheets | Pt and Ag/AgCl | 350 W Xe lamp | - | 890.0 | 15 | 26.7%@420 nm | [ |
0.1HCCN | Molten salt method | Nanorod | 3 wt% Pt | 350 W Xe lamp | 20.0 mg | 683.54 | 10 | 6.6%@420 nm | [ |
CNNVs-CTe | Facile alkali-assisted salts molten method | - | Me | full-spectrum andvisible light (λ > 420 nm) | - | 8723.8 | 18.48 | - | [ |
Fig. 16. (a) TEM image of CCN nanosheets. (b) HRTEM image displaying nanosheets. (c) Comparison of the H2 evolution rate of different chelating agents [21].
Fig. 17. (a) TEM image of CCN. (b) Calculation of the bandgap of CN and (c) CO2 adsorption isotherms of CCN and BCN. (d) Photocatalytic CO2 reduction performance of CCN and BCN under 86% humidity [42].
Fig. 18. (a) TEM and (b) SEM images of the synthesized products. (c) Schematic showing that Li was successfully embedded into the nitride carbon in the molten salt process [44].
[1] | P.D. Tran, L.H. Wong, J. Barber, J.S.C. Loo, Energy Environ.Sci. 5(2012) 5902-5918. |
[2] | G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J.R. Gong, Adv. Mater. 25(2013) 3820-3839. |
[3] | F. Li, D. Zhang, Q. Xiang, Chem Commun. 56(2020) 2443-2446. |
[4] | Y. Li, X. Li, H. Zhang, Q. Xiang, Nanoscale Horiz. 5(2020) 765-786. |
[5] | L. Cheng, D. Zhang, Y. Liao, F. Li, H. Zhang, Q. Xiang, J. Colloid Interface Sci. 555(2019) 94-103. |
[6] | L. Cheng, D. Zhang, Y. Liao, H. Zhang, Q. Xiang, Sol. RRL 3(2019) 1900062. |
[7] | A. Fujishima, K. Honda, Nature 238 (1972) 37-38. |
[8] | X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8(2009) 76-80. |
[9] | K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, J. Phys. Chem. C 113 (2009) 4940-4947. |
[10] | S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27(2015) 2150-2176. |
[11] | J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. An- tonietti, X. Wang, Angew. Chem. Int. Ed. 49 (2010) 441-444. |
[12] | J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391(2017) 72-123. |
[13] | B. Yan, J. Li, Z. Lin, C. Du, G. Yang, ACS Appl, Nano Mater. 2(2019) 6783-6792. |
[14] | M.H. Mohd Hatta, H.O. Lintang, S.L. Lee, L. Yuliati, Turk. J. Chem. 43(2019) 63-72. |
[15] | L. Lin, H. Ou, Y. Zhang, X. Wang, ACS Catal. 6(2016) 3921-3931. |
[16] | L. Lin, Z. Yu, X. Wang, Angew. Chem. Int. Ed. 58(2019) 6164-6175. |
[17] | B. Yan, Z. Chen, Y. Xu, Chem. Asian J. 15(2020) 2329-2340. |
[18] | Y. Li, F. Gong, Q. Zhou, X. Feng, J. Fan, Q. Xiang, Appl. Catal. B 268 (2020) 118381. |
[19] | C. Qiu, Y. Xu, X. Fan, D. Xu, R. Tandiana, X. Ling, Y. Jiang, C. Liu, L. Yu, W. Chen, C. Su, Adv. Sci. 6(2019) 1801403. |
[20] | H. Li, B. Zhu, S. Cao, J. Yu, Chem. Commun. 56(2020) 5641-5644. |
[21] | H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang. Adv. Mater.(2017) 29. |
[22] | W. Xing, W. Tu, Z. Han, Y. Hu, Q. Meng, G. Chen, ACS Energy Lett. 3(2018) 514-519. |
[23] | W. Iqbal, B. Qiu, Q. Zhu, M. Xing, J. Zhang, Appl. Catal. B 232(2018) 306-313. |
[24] | M.J. Bojdys, J.O. Muller, M. Antonietti, A. Thomas, Chemistry 14 (2008) 8177-8182. |
[25] | E. Wirnhier, M. Doblinger, D. Gunzelmann, J. Senker, B.V. Lotsch, W. Schnick, Chemistry 17 (2011) 3213-3221. |
[26] | P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, ACS Sustain. Chem. Eng. 6(2017) 965-973. |
[27] | D. Dontsova, S. Pronkin, M. Wehle, Z. Chen, C. Fettkenhauer, G. Clavel, M. An- tonietti, Chem.Mater. 27(2015) 5170-5179. |
[28] | Z. Chen, E. Vorobyeva, S. Mitchell, E. Fako, N. López, S.M. Collins, R.K. Leary, P.A. Midgley, R. Hauert, J. Pérez-Ramírez, Natl. Sci. Rev. 5(2018) 642-652. |
[29] | L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci. 11(2018) 1362-1391. |
[30] | Y. Guo, J. Wang, Z. Tao, F. Dong, K. Wang, X. Ma, P. Yang, P. Hu, Y. Xu, L. Yang, CrystEngComm 14 (2012) 1185-1188. |
[31] | Q. Xiang, F. Li, D. Zhang, Y. Liao, H. Zhou, Appl. Surf. Sci. 495(2019) 143520. |
[32] | W. Sundermeyer, Angew. Chem. Int. 4(1965) 222-238. |
[33] | W. Sundermeyer, Angew. Chem. Int. 6(1967) 90-91. |
[34] | Y. Li, D. Zhang, X. Feng, Q. Xiang, Chin. J. Catal. 41(2020) 21-30. |
[35] | A.B. Jorge, D.J. Martin, M.T.S. Dhanoa, A.S. Rahman, N. Makwana, J. Tang, A. Sella, F. Corà, S. Firth, J.A. Darr, P.F. McMillan, J. Phys. Chem. C 117 (2013) 7178-7185. |
[36] | K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch. J. Am. Chem. Soc. 136(2014) 1730-1733. |
[37] | J.N. Zhu, X.Q. Zhu, F.F. Cheng, P. Li, F. Wang, Y.W. Xiao, W.W. Xiong, Appl. Catal. B 256 (2019) 117830. |
[38] | Y. Xu, X. He, H. Zhong, D.J. Singh, L. Zhang, R. Wang, Appl. Catal. B 246 (2019) 349-355. |
[39] | S. Huang, Y. Xu, F. Ge, D. Tian, X. Zhu, M. Xie, H. Xu, H. Li, J. Colloid Interface Sci. 556(2019) 324-334. |
[40] | Z. Sun, Y. Jiang, L. Zeng, L. Huang, ChemSusChem 12 (2019) 1325-1333. |
[41] | H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 29(2017) 1605148. |
[42] | P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, Adv. Funct. Mater. 29(2019) 1900093. |
[43] | L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin, Z. Yu, X. Wang, Nat. Catal. 3(2020) 649-655. |
[44] | Y. Zhou, C. Liao, Y. Fan, S. Ma, M. Su, Z. Zhou, T.S. Chan, Y.R. Lu, K. Shih, Env- iron. Sci. Nano 6 (2019) 3324-3335. |
[45] | W. Ren, J. Cheng, H. Ou, C. Huang, M.M. Titirici, X. Wang, ChemSusChem 12 (2019) 3257-3262. |
[46] | V.V. Shvalagin, G.V. Korzhak, S.Y. Kuchmiy, M.A. Skoryk, D.R.T. Zahn, J. Pho- tochem, Photobiol. A 390 (2019) 112295. |
[47] | D. Zhao, C.L. Dong, B. Wang, C. Chen, Y.C. Huang, Z. Diao, S. Li, L. Guo, S. Shen, Adv. Mater. 31(2019) 1903545. |
[48] | V.W.H. Lau, V.W. Yu, F. Ehrat, T. Botari, I. Moudrakovski, T. Simon, V. Dup- pel, E. Medina, J.K. Stolarczyk, J. Feldmann, V. Blum, B.V. Lotsch, Adv. Energy Mater. 7(2017) 1602251. |
[49] | H. Wang, D. Yong, S. Chen, S. Jiang, X. Zhang, W. Shao, Q. Zhang, W. Yan, B. Pan, Y. Xie. J. Am. Chem. Soc. 140(2018) 1760-1766. |
[50] | C. Liu, H. Huang, L. Ye, S. Yu, N. Tian, X. Du, T. Zhang, Y. Zhang, Nano Energy 41(2017) 738-748. |
[51] | C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen, G. Yu, Angew. Chem. Int. Ed. 57(2018) 10246-10250. |
[52] | G. Xu, J. Shen, S. Chen, Y. Gao, H. Zhang, J. Zhang, Phys. Chem. Chem. Phys. 20(2018) 17471-17476. |
[53] | X. Liu, B. Jing, G. Lun, Y. Wang, X. Wang, C. Fang, Z. Ao, C. Li, Chem. Commun. 56(2020) 3179-3182. |
[54] | G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A. Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 58(2019) 3433-3437. |
[55] | M. Zhou, P. Yang, R. Yuan, A.M. Asiri, M. Wakeel, X. Wang, ChemSusChem. 10(2017) 4 451-4 456. |
[56] | L. Lin, W. Ren, C. Wang, A.M. Asiri, J. Zhang, X. Wang, Appl. Catal. B 231 (2018) 234-241. |
[57] | J. Liu, P. Lyu, Y. Zhang, P. Nachtigall, Y. Xu, Adv. Mater. 30(2018) 1705401. |
[58] | G. Zhang, G. Li, Z.A. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 56(2017) 13445-13449. |
[59] | S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53(2018) 296-336. |
[60] | Z. Hong, B. Shen, Y. Chen, B. Lin, B. Gao, J. Mater. Chem. A 1(2013) 11754-11761. |
[61] | P. Niu, G. Liu, H.M. Cheng, J. Phy. Chem. C 116 (2012) 11013-11018. |
[62] | P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Adv. Mater. 26(2014) 8046-8052. |
[63] | G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang, M. An- tonietti, Angew.Chem. Int. Ed. 57(2018) 9372-9376. |
[64] | P. Yang, H. Zhuzhang, R. Wang, W. Lin, X. Wang, Angew. Chem. Int. Ed. 58(2019) 1134-1137. |
[65] | X. Jin, C. Lv, X. Zhou, C. Zhang, Q. Meng, Y. Liu, G. Chen, Appl. Catal. B 226(2018) 53-60. |
[66] | H. Ou, X. Chen, L. Lin, Y. Fang, X. Wang, Angew. Chem. Int. Ed. 57(2018) 8729-8733. |
[67] | C. Yang, B. Wang, L. Zhang, L. Yin, X. Wang, Angew. Chem. Int. Ed. 56(2017) 6627-6631. |
[68] | S. Samanta, R. Srivastava, Sustain. Energy Fuels 1(2017) 1390-1404. |
[69] | Y. Cui, G. Zhang, Z. Lin, X. Wang, Appl. Catal. B 181(2016) 413-419. |
[70] | G. Zhang, A. Savateev, Y. Zhao, L. Li, M. Antonietti, J. Mater. Chem. A 5 (2017) 12723-12728. |
[71] | Z. Han, F. Qiu, R. Eisenberg, P.L. Holland, T.D. Krauss, Science 338 (2012) 1321-1324. |
[72] | K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, X. Zhang, Chin. J. Catal. 38(2017) 240-252. |
[73] | Y. Ren, D. Zeng, W.J. Ong, Chin. J. Catal. 40(2019) 289-319. |
[74] | T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu. J. Catal. 352(2017) 532-541. |
[75] | W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116(2016) 7159-7329. |
[76] | J. Kavil, P.M. Anjana, P. Periyat, R.B. Rakhi, Sustain. Energy Fuels 2(2018) 2244-2251. |
[77] | Z.A. Lan, G. Zhang, X. Wang, Appl. Catal. B 192 (2016) 116-125. |
[78] | Z. Luo, Y. Fang, M. Zhou, X. Wang, Angew. Chem. Int. Ed. 58(2019) 6033-6037. |
[79] | Y. Fang, X. Li, X. Wang, ChemSusChem 12 (2019) 2605-2608. |
[80] | J. Wutthiprom, N. Phattharasupakun, J. Khuntilo, T. Maihom, J. Limtrakul, M. Sawangphruk, Sustain. Energy Fuels 1(2017) 1759-1765. |
[81] | J. Zhang, M. Zhang, G. Zhang, X. Wang, ACS Catal. 2(2012) 940-948. |
[82] | S.P. Adhikari, Z.D. Hood, Vincent W. Chen, K.L. More, K. Senevirathne, A. Lach- gar, Sustain. Energy Fuels 2(2018) 2507-2515. |
[83] | G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako, J. Ye, Adv. Funct. Mater. 26(2016) 6822-6829. |
[84] | Z. Wang, X. Hu, G. Zou, Z. Huang, Z. Tang, Q. Liu, G. Hu, D. Geng, Sustain. Energy Fuels 3(2019) 611-655. |
[85] | K. Maeda, ACS Catal. 3(2013) 1486-1503. |
[86] | Y. Gong, M. Li, H. Li, Y. Wang, Green Chem. 17(2015) 715-736. |
[87] | X. Lu, J. Xie, X. Chen, X. Li, Appl. Catal. B 252 (2019) 250-259. |
[88] | F. Chen, H. Yang, W. Luo, P. Wang, H. Yu, Chin. J. Catal. 38(2017) 1990-1998. |
[89] | F. Chen, H. Yang, X. Wang, H. Yu, Chin. J. Catal. 38(2017) 296-304. |
[90] | L. Lin, C. Wang, W. Ren, H. Ou, Y. Zhang, X. Wang, Chem. Sci. 8(2017) 5506-5511. |
[91] | Z. Chen, S. Li, Y. Zhao, M.F. Aly Aboud, I. Shakir, Y. Xu, J. Mater. Chem. A 7(2019) 26342-26350. |
[92] | M. Wang, X. Duan, Y. Xu, X. Duan, ACS Nano 10 (2016) 7231-7247. |
[93] | P. Xiao, Y. Xu, J. Mater. Chem. A 6 (2018) 21676-21695. |
[94] | Z. Zhang, X. Su, Y. Zhu, Z. Fang, X. Luo, Z. Chen, Nanotechnology 31 (2020) 255403. |
[95] | H. Duan, P. Lyu, J. Liu, Y. Zhao, Y. Xu, ACS Nano 13 (2019) 2473-2480. |
[96] | Z. Chen, J. Chen, F. Bu, P.O. Agboola, I. Shakir, Y. Xu, ACS Nano 12 (2018) 12879-12887. |
[97] | J. Liu, J. Phy. Chem. C 119 (2015) 28417-28423. |
[98] | Y. Xu, C.Y. Chen, Z. Zhao, Z. Lin, C. Lee, X. Xu, C. Wang, Y. Huang, M.I. Shakir, X. Duan, Nano Lett. 15(2015) 4605-4610. |
[99] | J. Bai, Q. Han, Z. Cheng, L. Qu, Chem. Asian J. 13(2018) 3160-3164. |
[100] | W. Li, Z. Lin, G. Yang, Nanoscale 9(2017) 18290-18298. |
[101] | Y. Li, X. Feng, Z. Lu, H. Yin, F. Liu, Q. Xiang, J. Colloid Interface Sci. 513(2018) 866-876. |
[102] | Y. Yang, F. Li, J. Chen, J. Fan, Q. Xiang, ChemSusChem. 13(2020) 1979-1985. |
[103] | F. Bu, W. Chen, J. Gu, P.O. Agboola, N.F. Al-Khalli, I. Shakir, Y. Xu, Chem. Sci. 9(2018) 7009-7016. |
[104] | Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Sol. RRL 2(2018) 233403. |
[105] | Z. Zhang, D. Jiang, D. Li, M. He, M. Chen, Appl. Catal. B 183 (2016) 113-123. |
[106] | X. Ma, Q. Xiang, Y. Liao, T. Wen, H. Zhang, Appl. Surf. Sci. 457(2018) 846-855. |
[107] | T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, ACS Catal 8(2018) 2253-2276. |
[108] | S.W. Cao, Rare Met. 39(2020) 610-612. |
[109] | Y. Guo, J. Li, Y. Yuan, L. Li, M. Zhang, C. Zhou, Z. Lin, Angew. Chem. Int. Ed. 55(2016) 14693-14697. |
[110] | R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Li, Appl. Surf. Sci. 471(2019) 43-87. |
[111] | N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, Y. Gao, L. Ge, G. Lu, Chin. J. Catal. 40(2019) 352-361. |
[112] | Z. Li, Y. Ma, X. Hu, E. Liu, J. Fan, Chin. J. Catal. 40(2019) 434-445. |
[113] | Z. Ding, X. Chen, M. Antonietti, X. Wang, ChemSusChem. 4(2011) 274-281. |
[114] | S.A. Ladva, W. Travis, R. Quesada-Cabrera, M. Rosillo-Lopez, A. Afandi, Y. Li, R.B. Jackman, J.C. Bear, I.P. Parkin, C. Blackman, C.G. Salzmann, R.G. Palgrave, Nanoscale 9(2017) 16586-16590. |
[115] | Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 54(2015) 12868-12884. |
[116] | Q. Guo, Y. Zhang, J. Qiu, G. Dong, J. Mater. Chem. C 4(2016) 6839-6847. |
[117] | Y. Wang, X. Zhou, W. Xu, Y. Sun, T. Wang, Y. Zhang, J. Dong, W. Hou, N. Wu, L. Wu, B. Zhou, Y. Wu, Y. Du, W. Zhong, Appl. Catal. A 582(2019) 117118. |
[118] | H. Wang, Y. Bian, J. Hu, L. Dai, Appl. Catal. B 238 (2018) 592-598. |
[119] | H. Wang, B. Wang, Y. Bian, L. Dai, ACS Appl. Mater. Interfaces 9(2017) 21730-21737. |
[120] | X.H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, X. Wang, Chem. Mater. 23(2011) 4344-4348. |
[121] | J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater. 31(2019) e1802981. |
[122] | M. Sun, K. Li, W.D. Zhang, Y.X. Yu, Chem. Asian J. 13(2018) 3073-3083. |
[123] | H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24(2012) 229-251. |
[124] | X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110(2010) 6503-6570. |
[125] | J.D. Yao, Z.Q. Zheng, G.W. Yang, Nanoscale 9(2017) 16396-16403. |
[126] | P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26(2014) 4920-4935. |
[127] | M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95(1995) 69-96. |
[128] | C. Acar, I. Dincer, G.F. Naterer, Int. J. Energy Res. 40(2016) 1449-1473. |
[129] | I. Dincer, C. Acar, Int. J. Energy Res. 39(2015) 585-606. |
[130] | Q. Xiang, F. Cheng, D. Lang, ChemSusChem. 9(2016) 996-1002. |
[131] | A. Kudo, Y. Miseki, Chem. Soc. Rev. 38(2009) 253-278. |
[132] | M. Liu, S. Wageh, A.A. Al-Ghamdi, P. Xia, B. Cheng, L. Zhang, J. Yu, Chem. Commun. 55(2019) 14023-14026. |
[133] | Z. Chen, A. Savateev, S. Pronkin, V. Papaefthimiou, C. Wolff, M.G. Willinger, E. Willinger, D. Neher, M. Antonietti, D. Dontsova, Adv. Mater. 29(2017) 1700555. |
[134] | G.Z. Chen, K.J. Chen, J.W. Fu, M. Liu, Rare Met 39(2020) 607-609. |
[135] | B. Zhu, B. Cheng, L. Zhang, J. Yu, Carbon Energy 1(2019) 32-56. |
[136] | Y. Li, B. Li, D. Zhang, L. Cheng, Q. Xiang, ACS Nano 14 (2020) 10552-10561. |
[137] | S.B. Kokane, R. Sasikala, D.M. Phase, S.D. Sartale. J. Mater. Sci. 52(2017) 7077-7090. |
[138] | X. Wu, H. Ma, W. Zhong, J. Fan, H. Yu, Appl. Catal. B: Environ. 271(2020) 118899. |
[139] | S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52(2013) 7372-7408. |
[140] | L. Yuan, Y.J. Xu, Appl. Surf. Sci. 342(2015) 154-167. |
[141] | T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277 (1979) 637-638. |
[142] | F. Li, D. Zhang, Q. Xiang, Chem. Commun. 56(2020) 2443-2446. |
[143] | Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4(2011) 42-55. |
[144] | P. Gu, J. Xing, T. Wen, R. Zhang, J. Wang, G. Zhao, T. Hayat, Y. Ai, Z. Lin, X. Wang, Environ. Sci. Nano 5(2018) 946-955. |
[145] | F. Fu, L. Xie, B. Tang, Q. Wang, S. Jiang, Chem. Eng. J. 189- 190(2012) 283-287. |
[146] | F. Cheng, H. Yin, Q. Xiang, Appl. Surf. Sci. 391(2017) 432-439. |
[147] | A.G. El Samrani, B.S. Lartiges, F. Villieras, Water Res. 42(2008) 951-960. |
[148] | A.K. Ghattas, F. Fischer, A. Wick, T.A. Ternes, Water Res. 116(2017) 268-295. |
[149] | A. Mahmoud, A.F. Hoadley, Water Res. 46(2012) 3364-3376. |
[150] | P. Wang, X. Wang, S. Yu, Y. Zou, J. Wang, Z. Chen, N.S. Alharbi, A. Alsaedi, T. Hayat, Y. Chen, X. Wang, Chem. Eng. J. 306(2016) 280-288. |
[151] | Q. Zhang, Q. Du, M. Hua, T. Jiao, F. Gao, B. Pan, Environ. Sci. Technol. 47(2013) 6536-6544. |
[152] | Q. Zhang, N. Wang, L. Zhao, T. Xu, Y. Cheng, ACS Appl. Mater. Interfaces 5 (2013) 1907-1912. |
[153] | I. Oller, S. Malato, J.A. Sanchez-Perez, Sci. Total Environ. 409(2011) 4141-4166. |
[154] | S. Zhao, H. Zhu, Z. Wang, P. Song, M. Ban, X. Song, Chem. Eng. J. 353(2018) 460-471. |
[155] | W. Song, M. Cheng, J. Ma, W. Ma, C. Chen, J. Zhao, Environ. Sci. Technol. 40(2006) 4782-4787. |
[156] | J. Zhu, P. Xiao, H. Li, S.A. Carabineiro, ACS Appl. Mater. Interfaces 6(2014) 16449-16465. |
[157] | P. Guo, Q. Ye, X. Yang, J. Zhang, F. Xu, D. Shchukin, B. Wei, H. Wang, J. Mater. Chem. A 7 (2019) 2497-2506. |
[158] | J. Liu, H. Wang, M. Antonietti, Chem. Soc. Rev. 45(2016) 2308-2326. |
[159] | Z. Zhao, Y. Sun, F. Dong, Nanoscale 7(2015) 15-37. |
[160] | J. Jian, G. Jiang, R. van de Krol, B. Wei, H. Wang, Nano Energy 51 (2018) 457-480. |
[161] | J. Du, Y. Fan, X. Gan, X. Dang, H. Zhao, Electrochim. Acta 330 (2020) 135336. |
[1] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
[2] | Qianqian Liu, Quan Zhang, Lu Zhang, Wei-Lin Dai. Highly efficient single-crystalline NaNb1-XTaXO3 (X = 0.125) wires: The synergistic effect of tantalum-doping and morphology on photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2020, 54(0): 20-30. |
[3] | Zizhan Liang, Rongchen Shen, Hau Ng Yun, Peng Zhang, Quanjun Xiang, Xin Li. A review on 2D MoS2 cocatalysts in photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 89-121. |
[4] | Jun Xiao, Weiyi Yang, Shuang Gao, Caixia Sun, Qi Li. Fabrication ofultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination [J]. J. Mater. Sci. Technol., 2018, 34(12): 2331-2336. |
[5] | Qian Tingting, Yin Xiaoping, Li Jinhong, Nian Hong’en, Xu Hui, Deng Yong, Wang Xiang. Nano-TiO2 Decorated Radial-Like Mesoporous Silica: Preparation, Characterization, and Adsorption-Photodegradation Behavior [J]. J. Mater. Sci. Technol., 2017, 33(11): 1314-1322. |
[6] | Anil Kumar Reddy Police, Srinivas Basavaraju, Durga Kumari Valluri, Subrahmanyam Machiraju. Bismuth Modified Porous Silica Preparation, Characterization and Photocatalytic Activity Evaluation for Degradation of Isoproturon [J]. J. Mater. Sci. Technol., 2013, 29(7): 639-646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||