J. Mater. Sci. Technol. ›› 2021, Vol. 91: 241-250.DOI: 10.1016/j.jmst.2021.01.097
• Research Article • Previous Articles Next Articles
Huiping Hu, Kaiyang Xia, Yuechu Wang, Chenguang Fu, Tiejun Zhu*(), Xinbing Zhao
Received:
2020-12-14
Revised:
2021-01-09
Accepted:
2021-01-09
Published:
2021-11-20
Online:
2021-11-20
Contact:
Tiejun Zhu
About author:
*E-mail address: zhutj@zju.edu.cn (T. Zhu).Huiping Hu, Kaiyang Xia, Yuechu Wang, Chenguang Fu, Tiejun Zhu, Xinbing Zhao. Fast synthesis and improved electrical stability in n-type Ag2Te thermoelectric materials[J]. J. Mater. Sci. Technol., 2021, 91: 241-250.
Fig. 1. (a) Pictures of Ag and Te powder with different grinding time. (b) XRD patterns of Ag-Te powder with grinding time of 5 min, 10 min, 30 min, and 60 min. (c) DSC and TG curves of Ag2Te sample synthesized by manual mixing in the temperature range of 300-573 K. (d) XRD patterns of Ag2Te bulks synthesized by melting, ball-milling, and manual mixing.
Fig. 2. Temperature dependences of (a) electrical conductivity, (b) Seebeck coefficient, (c) total thermal conductivity, and (d) the figure of merit zT for Ag2Te bulks synthesized by melting (M), ball milling (BM), and manual mixing (MM). The magenta short dash line is the literature data of Ag2Te synthesized by melting and SPS [27]. We have eliminated those values in the temperature range of 400-450 K where the phase transition occurs, which causes a great fluctuation in the results.
Electrical property measuring cycles | EPMA composition | ρ (g cm-3) | nH (1018 cm-3) | µH (103 cm2 V-1 s-1) |
---|---|---|---|---|
0 | Ag2.018Te | 8.37 | 1.20 | 5.12 |
1 | Ag1.979Te | 8.31 | 1.47 | 4.46 |
2 | Ag1.955Te | 8.23 | 1.01 | 3.58 |
3 | Ag1.928Te | 8.19 | 1.32 | 2.35 |
Table 1 Actual chemical compositions, density, carrier concentration, and carrier mobility for MM samples with different electrical property measuring cycles at room temperature.
Electrical property measuring cycles | EPMA composition | ρ (g cm-3) | nH (1018 cm-3) | µH (103 cm2 V-1 s-1) |
---|---|---|---|---|
0 | Ag2.018Te | 8.37 | 1.20 | 5.12 |
1 | Ag1.979Te | 8.31 | 1.47 | 4.46 |
2 | Ag1.955Te | 8.23 | 1.01 | 3.58 |
3 | Ag1.928Te | 8.19 | 1.32 | 2.35 |
Fig. 3. Temperature dependences of (a) electrical conductivity and (b) Seebeck coefficient of pristine Ag2Te prepared by manual-mixing and SPS with cyclic electrical property measurements for 3 cycles.
Fig. 4. (a-d) SEM images of the polished surface for MM samples with different electrical property measurement cycles. (e-h) BSE images of polished surface for MM samples with different electrical property measurement cycles. Moreover, images denoted as Before measurement are obtained from MM sample without electrical property measurement, and so on. In BSE images, the gray regions are Ag2Te phase, and the actual compositions detected by EPMA are shown in the bottom left corner as well as in Table 1. The black regions are confirmed to be pores.
Fig. 5. SEM images of fresh fracture surface for MM samples with different annealing cycles. (a) Unannealed, (b) annealing 1 cycle, (c) annealing 2 cycles, (d) annealing 3 cycles. The annealing temperature and time (t) of each cycle are identical to the electrical property measurement with temperature ranging from ambient temperature to 573 K and t = 250 min.
Fig. 6. SEM images of fresh fracture surface for MM samples with different annealing temperatures. (a) Annealed at 373 K, (b) annealed at 473 K, and (c) annealed at 573 K for 420 min.
Fig. 7. Phase structure and microstructure for Ag2-xPbxTe specimens. (a) Powder XRD patterns of Ag2-xPbxTe (x = 0-0.05) specimens. (b) SEM image and (c) BSE image of polished surface for Ag1.96Pb0.04Te sample after 3 times cyclic electrical property measurement. (d-f) SEM images of fresh fracture surface for Ag1.96Pb0.04Te sample with no anneal treatment and 3 cycles anneal treatment respectively. Anneal temperature (T) and time (t) of each cycle are identical to the electrical property measurement.
Fig. 8. Temperature dependences of electrical conductivity (a, c, e and g) and Seebeck coefficient (b, d, f and h) for Ag2-xPbxTe (x = 0.005, 0.01, 0.02, and 0.04) specimens with cyclic electrical property measurements for 3 times. We have eliminated those Seebeck coefficient values in the temperature range of 400-450 K where phase transition occurs to cause great fluctuation in the results.
Fig. 9. Temperature dependences of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor and (d) thermal conductivity of the Ag2-xPbxTe specimens (x = 0-0.05). We have repeatedly measured the TE properties for three cycles and then chosen the data from the last cycle.
[1] | T.J. Zhu, Y.T. Liu, C.G. Fu, J.P. Heremans, J.G. Snyder, X.B. Zhao, Adv. Mater. 29(2017) 1605884. |
[2] | D.M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, USA, 1995. |
[3] | P.J. Ying, X.H. Liu, C.G. Fu, X.Q. Yue, H.H. Xie, X.B. Zhao, W.Q. Zhang, T.J. Zhu, Chem. Mater. 27(2015) 909-913. |
[4] | P.J. Ying, X. Li, Y.C. Wang, J. Yang, C.G. Fu, W.Q. Zhang, X.B. Zhao, T.J. Zhu, Adv. Funct. Mater. 27(2017) 1604145. |
[5] | L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373-377. |
[6] | Y. Kim, Y. Jin, G. Yoon, I. Chung, H. Yoon, C.Y. Yoo, S.H. Park. J. Mater. Sci. Tech- nol. 35(2019) 711-718. |
[7] | Y.L. Pei, J.Q. He, J.F. Li, F. Li, Q.J. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dra- goe, L.D. Zhao, , NPG Asia Mater. 5(2013) e47. |
[8] | J.H. Sui, J. Li, J.Q. He, Y.L. Pei, D. Berardan, H.J. Wu, N. Dragoe, W. Cai, L.D. Zhao, Energy Environ. Sci. 6(2013) 2916-2920. |
[9] | K.P. Zhao, P.F. Qiu, X. Shi, L.D. Chen, Adv. Funct. Mater. 30(2020) 1903867. |
[10] | T.Z. Fu, J.Z. Xin, T.J. Zhu, J.J. Shen, T. Fang, X.B. Zhao, Sci. Bull. 64(2019) 1024-1030. |
[11] | P.P. Xu, T.Z. Fu, J.Z. Xin, Y.T. Liu, P.J. Ying, X.B. Zhao, H.G. Pan, T.J. Zhu, Sci. Bull. 62(2017) 1663-1668. |
[12] | T.Z. Fu, X.Q. Yue, H.J. Wu, C.G. Fu, T.J. Zhu, X.H. Liu, L.P. Hu, P.J. Ying, J.Q. He, X.B. Zhao. J. Materiomics. 2(2016) 141-149. |
[13] | P. Boolchand, W.J. Bresser, Nature 410 (2001) 1070-1073. |
[14] | H.L. Liu, X. Shi, F.F. Xu, L.L. Zhang, W.Q. Zhang, L.D. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Nat. Mater. 11(2012) 422-425. |
[15] | C. Xiao, J. Xu, K. Li, J. Feng, J. Yang, Y. Xie. J. Am. Chem. Soc. 134(2012) 4287-4293. |
[16] | H.L. Liu, X. Yuan, P. Lu, X. Shi, F.F. Xu, Y. He, Y.S. Tang, S.Q. Bai, W.Q. Zhang, L.D. Chen, Y. Lin, L. Shi, H. Lin, X.Y. Gao, X.M. Zhang, H. Chi, C. Uher, Adv. Mater. 25(2013) 6607-6612. |
[17] | Y. He, T. Day, T.S. Zhang, H.L. Liu, X. Shi, L.D. Chen, G.J. Snyder, Adv. Mater. 26(2014) 3974-3978. |
[18] | Y. He, T.S. Zhang, X. Shi, S.H. Wei, L.D. Chen, NPG Asia Mater 7(2015) e210. |
[19] | A.A. Olvera, N.A. Moroz, P. Sahoo, P. Ren, T.P. Bailey, A.A. Page, C. Uher, P.F.P. Poudeu, Energy Environ. Sci. 10(2017) 1668-1676. |
[20] | T.R. Wei, Y.T. Qin, T.T. Deng, Q.F. Song, B.B. Jiang, R.H. Liu, P.F. Qiu, X. Shi, L.D. Chen, Sci. China Mater. 62(2019) 8-24. |
[21] | R. Dalven, R. Gill, Phys. Rev. 143(1966) 666-670. |
[22] | D.Y. Jung, K. Kurosaki, Y. Ohishi, H. Muta, S. Yamanaka, Mater. Trans. 53(2012) 1216-1219. |
[23] | R.N. Wu, Z.L. Li, Y.B. Li, L. You, P.F. Luo, J. Yang, J. Luo. J. Materiomics. 5(2019) 489-495. |
[24] | C. Wood, V. Harrap, W.M. Kane, Phys. Rev. 121(1961) 978-982. |
[25] | Y.Z. Pei, N.A. Heinz, G.J. Snyder. J. Mater. Chem. 21(2011) 18256-18260. |
[26] | J. Capps, F. Drymiotis, S. Lindsey, T.M. Tritt, Philos. Mag. Lett. 90(2010) 677-681. |
[27] | H.T. Zhu, J. Luo, H.Z. Zhao, J.K. Liang, J. Mater. Chem. A 3 (2015) 10303-10308. |
[28] | T. Zhu, H. Bai, J. Zhang, G.J. Tan, Y.G. Yan, W. Liu, X.L. Su, J.S. Wu, Q.J. Zhang, X.F. Tang, ACS Appl. Mater. Interfaces 12 (2020) 39425-39433. |
[29] | H.R. Yang, J.H. Bahk, T. Day, A.M.S. Mohammed, B. Min, G.J. Snyder, A. Shakouri, Y. Wu, Nano Lett 14 (2014) 5398-5404. |
[30] | X.L. Zeng, L.L. Ren, J.Q. Xie, D.S. Mao, M.M. Wang, X.L. Zeng, G.P. Du, R. Sun, J.B. Xu, C.P. Wong, ACS Appl. Mater. Interfaces 11 (2019) 37892-37900. |
[31] | H.Z. Duan, Y.L. Li, K.P. Zhao, P.F. Qiu, X. Shi, L.D. Chen, JOM 68 (2016) 2659-2665. |
[32] | D.W. Yang, X.L. Su, F.C. Meng, S. Wang, Y.G. Yan, J.H. Yang, J. He, Q.J. Zhang, C. Uher, M.G. Kanatzidis, X.F. Tang, J. Mater. Chem. A 5 (2017) 23243-23251. |
[33] | H. Wang, X. Liu, B. Zhang, L. Huang, M. Yang, X. Zhang, H. Zhang, G. Wang, X. Zhou, G. Han, Chem. Eng. J. 393(2020) 124763. |
[34] | M. Fujikane, K. Kurosaki, H. Muta, S. Yamanaka. J. Alloys Compd. 393(2005) 299-301. |
[35] | D.W. Yang, A. Benton, J. He, X.F. Tang, J. Phys. D-Appl. Phys. 53(2020) 193001. |
[36] | D.R. Brown, T. Day, T. Caillat, G.J. Snyder. J. Electron. Mater. 42(2013) 2014-2019. |
[37] | T. Mao, P.F. Qiu, P. Hu, X.L. Du, K.P. Zhao, T.R. Wei, J. Xiao, X. Shi, L.D. Chen, Adv. Sci. 7(2020) 1901598. |
[38] | P. Qiu, M.T. Agne, Y. Liu, Y. Zhu, H. Chen, T. Mao, J. Yang, W. Zhang, S.M. Haile, W.G. Zeier, J. Janek, C. Uher, X. Shi, L. Chen, G.J. Snyder, Nat. Commun. 9(2018) 2910. |
[39] | H. Yin, M. Christensen, N. Lock, B.B. Iversen, Appl. Phys. Lett. 101(2012) 043901. |
[40] | X.Y. Qi, J. Chen, K. Guo, S.Y. He, J. Yang, Z.L. Li, J.J. Xing, J.F. Hu, H.J. Luo, W.Q. Zhang, J. Luo, Chem. Eng. J. 374(2019) 494-501. |
[41] | T.P. Bailey, C. Uher, Curr. Opin. Green Sustain.Chem. 4(2017) 58-63. |
[42] | P.F. Qiu, T.S. Zhang, Y.T. Qiu, X. Shi, L.D. Chen, Energy Environ. Sci. 7(2014) 4000-4006. |
[43] | S. Bhattacharya, A. Bohra, R. Basu, R. Bhatt, S. Ahmad, K.N. Meshram, A.K. Deb- nath, A. Singh, S.K. Sarkar, M. Navneethan, Y. Hayakawa, D.K. Aswal, S.K. Gupta, J. Mater. Chem. A 2 (2014) 17122-17129. |
[44] | J.Z. Xin, H.J. Wu, X.H. Liu, T.J. Zhu, G.T. Yu, X.B. Zhao, Nano Energy 34 (2017) 428-436. |
[45] | S.A. Aliev, Z.F. Agaev, É.I. Zul’figarov, Semiconductors 41 (2007) 1027-1032. |
[46] | F.F. Aliev, Semiconductors 37 (2003) 1057-1060. |
[47] | R.A. Yakshibaev, N.N. Mukhamadeeva, R.F.Kadrgulov,Phys.StatusSolidi A 121 (1990) 111-117. |
[48] | T.P. Bailey, S. Hui, H.Y. Xie, A. Olvera, P.F.P. Poudeu, X.F. Tang, C. Uher, J. Mater. Chem. A 4 (2016) 17225-17235. |
[49] | R.D. Shannon, Acta Cryst. A 32 (1976) 751-767. |
[50] | J.F. Scott, H.G. Bohn, W. Schenk, Appl. Phys. Lett. 77(2000) 2599-2600. |
[1] | E. Vazirinasab, G. Momen, R. Jafari. A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite [J]. J. Mater. Sci. Technol., 2021, 66(0): 213-225. |
[2] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[3] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[4] | Jinseo Kim, Le Thai Duy, Hyunwoo Kang, Byungmin Ahn, Hyungtak Seo. Fluorine doping for improved thermoelectric properties of spark plasma sintered bismuth telluride [J]. J. Mater. Sci. Technol., 2021, 90(0): 225-235. |
[5] | Youfang Cao, Longtao Jiang, Deng Gong, Guoqin Chen, Ziyang Xiu, Yangming Cheng, Xiufang Wang, Gaohui Wu. Quantitative study of dimensional stability mechanism and microstructure evolution during precipitation process of 2024Al alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 85-94. |
[6] | Yimeng Zhao, Xuan Li, Xiaobin Liu, Jiazi Bi, Yang Wu, Ruijuan Xiao, Ran Li, Tao Zhang. Balancing benefits of strength, plasticity and glass-forming ability in Co-based metallic glasses [J]. J. Mater. Sci. Technol., 2021, 86(0): 110-116. |
[7] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
[8] | Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J]. J. Mater. Sci. Technol., 2021, 78(0): 121-130. |
[9] | Yongxin Ruan, Changrong Li, Yuping Ren, Xiaopan Wu, R. Schmid-Fetzer, Cuiping Guo, Zhenmin Du. Phases equilibrated with long-period stacking ordered phases in the Mg-rich corner of the Mg-Y-Zn system [J]. J. Mater. Sci. Technol., 2021, 68(0): 147-159. |
[10] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[11] | Chunhai Jiang, Wenyang Zhou, Zhimin Zou. Nitrogen and oxygen co-doped mesoporous carbon spheres as capacitive anode for high performance sodium-ion capacitors [J]. J. Mater. Sci. Technol., 2021, 83(0): 188-195. |
[12] | Milad Ghayoor, Saereh Mirzababaei, Anumat Sittiho, Indrajit Charit, Brian K. Paul, Somayeh Pasebani. Thermal stability of additively manufactured austenitic 304L ODS alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 208-218. |
[13] | Xinzeng Liang, Jing Bai, Ziqi Guan, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Revealing the role of site occupation in phase stability, magnetic and electronic properties of Ni-Mn-In alloys by ab initio approach [J]. J. Mater. Sci. Technol., 2021, 83(0): 90-101. |
[14] | Yang Yu, Yu Zhao, Yu-Long Qiao, Yu Feng, Wei-Li Li, Wei-Dong Fei. Defect engineering of rutile TiO2 ceramics: Route to high voltage stability of colossal permittivity [J]. J. Mater. Sci. Technol., 2021, 84(0): 10-15. |
[15] | Qianqian Hu, Biao Wang, Shiyong Chang, Chun Yang, Yunjian Hu, Shubin Cao, Jiqun Lu, Lingzhi Zhang, Ye Hong. Effects of annealing temperature on electrochemical performance of SnSx embedded in hierarchical porous carbon with N-carbon coating by in-situ structural phase transformation as anodes for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 84(0): 191-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||