J. Mater. Sci. Technol. ›› 2021, Vol. 83: 90-101.DOI: 10.1016/j.jmst.2020.12.040
• Research Article • Previous Articles Next Articles
Xinzeng Lianga, Jing Baia,b,d,*(), Ziqi Guana, Jianglong Guc, Haile Yana, Yudong Zhange, Claude Eslinge, Xiang Zhaoa,*(
), Liang Zuoa
Received:
2020-10-27
Revised:
2020-12-21
Accepted:
2020-12-23
Published:
2021-01-30
Online:
2021-01-30
Contact:
Jing Bai,Xiang Zhao
About author:
zhaox@mail.neu.edu.cn (X. Zhao).Xinzeng Liang, Jing Bai, Ziqi Guan, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Revealing the role of site occupation in phase stability, magnetic and electronic properties of Ni-Mn-In alloys by ab initio approach[J]. J. Mater. Sci. Technol., 2021, 83: 90-101.
Fig. 1. Structure models for (a) the ordered Cu2MnAl structure Ni2MnIn, (b) Ni8Mn5In3 (MnIn), (c) Ni8Mn5In3 (MnNi+NiIn), and (d) Ni8Mn6In2 (MnIn and MnNi+NiIn) alloys. Among them, (b), (c), and (d) display the direct site occupation (D), indirect site occupation (ID), and mixed site occupation (M), respectively. The magnetic configuration indicates the possible ferromagnetism (FM) and ferrimagnetism (FIM) states. The Ni2 and Mn2 respectively represent the atoms that deviate from the normal Ni (8c) and Mn (4a) sites.
Fig. 2. Variation of ground-state total energies with all possible site occupation and magnetic configurations for the austenite phase of (a) Ni2Mn1+xIn1-x, (b) Ni2-xMn1+xIn, (c) Ni2+xMn1-xIn, and (d) Ni2+xMnIn1-x systems with x = 0, 0.25, 0.5, and 0.75, respectively. The dashed box indicates the lowest ground state total energy for each compound.
Fig. 3. Dependence of lattice constant of austenite on composition for the (a1) Ni2Mn1+xIn1-x, (b1) Ni2-xMn1+xIn, (c1) Ni2+xMn1-xIn, and (d1) Ni2+xMnIn1-x systems under all possible configurations. The experimental and theoretical data are cited from Refs. [10,11,35,[40], [41], [42]]. The differential charge densities on the (011) plane at x = 0.25 in each system under different configurations are also displayed in (a2)-(d2) and (a3)-(d3).
Fig. 4. Formation energies (Ef) of cubic austenite with possible site occupancy and magnetic configurations in the (a) Ni2Mn1+xIn1-x, (b) Ni2-xMn1+xIn, (c) Ni2+xMn1-xIn, and (d) Ni2+xMnIn1-x systems. Ef = 0 meV/atom is also marked with a dashed line. (e) The distribution of the formation energy (Ef) for cubic austenite is mapped onto the ternary diagram of Ni-Mn-In.
Fig. 5. Total magnetic moment of austenite with possible site occupation and magnetic configurations in the (a) Ni2Mn1+xIn1-x, (b) Ni2-xMn1+xIn, (c) Ni2+xMn1-xIn, and (d) Ni2+xMnIn1-x systems. (e) The distribution of total magnetic moment for the austenite phase is mapped onto the ternary diagram of Ni-Mn-In.
Fig. 6. Atomic magnetic moments of the Ni1, Ni2, Mn1 and Mn2 atoms for the (a-c) Ni2Mn1+xIn1-x, (d-f) Ni2-xMn1+xIn, (g-i) Ni2+xMn1-xIn, and (j-l) Ni2+xMnIn1-x systems.
Fig. 7. Variation of total energy as a function of c/a in the (a) Ni2Mn1+xIn1-x, (b) Ni2-xMn1+xIn, (c) Ni2+xMn1-xIn, and (d) Ni2+xMnIn1-x systems with different site occupations and magnetic configurations. For comparison, the corresponding theoretical results with possible configurations in Table S1 of the supplementary material with x = 0.5 are also shown.
Fig. 8. Isosurface plots of difference charge densities at 0.0045 e/Å3 for the Ni2Mn1+xIn1-x, Ni2-xMn1+xIn, Ni2+xMn1-xIn, and Ni2+xMnIn1-x systems (yellow color means electron gain, and blue means electron loss).
Fig. 9. TDOS near Fermi energy (EF) of the (a) Ni2Mn1+xIn1-x, (b) Ni2-xMn1+xIn, (c) Ni2+xMn1-xIn, and (d) Ni2+xMnIn1-x systems. Zero energy is regarded as EF.
Fig. 10. TDOS near Fermi energy (EF) for x = 0.5 of the (a) Ni2Mn1+xIn1-x, (b) Ni2-xMn1+xIn, (c) Ni2+xMn1-xIn, and (d) Ni2+xMnIn1-x systems. Zero energy is regarded as EF.
[1] |
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomota, K. Ishida, Nature 439 (2006) 957-960.
DOI URL |
[2] | T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Ma˜nosa, A. Planes, E. Suard, B. Ouladdiaf, Phys. Rev. B 75 (2007), 104414. |
[3] |
E. Stern-Taulats, P.O. Castillo-Villa, L. Ma˜nosa, C. Frontera, S. Pramanick, S. Majumdar, A. Planes, J. Appl. Phys. 115 (2014), 173907.
DOI URL |
[4] | J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat.Mater. 11 (2012) 620-626. |
[5] |
Y. Huang, Q. Hu, N.M. Bruno, J. Chen, I. Karaman, J.H. Ross, J.G. Li, Scr. Mater. 105 (2015) 42-45.
DOI URL |
[6] |
Z.Z. Li, Z.B. Li, D. Li, J.J. Yang, B. Yang, Y. Hu, D.H. Wang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Mater. 192 (2020) 52-59.
DOI URL |
[7] |
V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan, S.B. Roy, Appl. Phys. Lett. 89 (2006), 222509.
DOI URL |
[8] |
B. Zhang, X.X. Zhang, S.Y. Yu, J.L. Chen, Z.X. Cao, G.H. Wu, Appl. Phys. Lett. 91 (2007), 012510.
DOI URL |
[9] |
X. Wang, J.X. Shang, F.H. Wang, C.B. Jiang, H.B. Xu, J. Magn. Magn. Mater. 355 (2014) 173-179.
DOI URL |
[10] | T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Ma˜nosa, A. Planes, Phys. Rev. B 73 (2006), 174413. |
[11] |
T. Kanomata, T. Yasuda, S. Sasaki, H. Nishihara, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, K.U. Neumann, K.R.A. Ziebeck, J. Magn. Magn. Mater. 321 (2009) 773-776.
DOI URL |
[12] | V. Sánchez-Alarcos, J.I. Pérez-Landazábal, V. Recarte, J.A. Rodríguez-Velamazán, V.A. Chernenko, J. Phys. Condens. Matter 22 (2010), 166001. |
[13] |
V. Sánchez-Alarcos, J.I. Pérez-Landazábal, V. Recarte, I. Lucia, J. Vélez, J.A. Rodríguez-Velamazán, Acta Mater. 61 (2013) 4676-4682.
DOI URL |
[14] |
C. Segui, J. Pons, E. Cesari, Acta Mater. 55 (2007) 1649-1655.
DOI URL |
[15] |
C.H. Huang, Y. Wang, Z. Tang, X.Q. Liao, S. Yang, X.P. Song, J. Alloys. Compd. 630 (2015) 244-249.
DOI URL |
[16] |
A.T. Zayak, P. Entel, Mater. Sci. Eng. A 378 (2004) 419-423.
DOI URL |
[17] | M. Gigla, P. Szczeszek, H. Morawiec, Mater. Sci. Eng. A 1015 (2006) 438-440. |
[18] |
V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, C.Go ´mez-Polo, J.A. Rodríguez-Velamazán, Acta Mater. 60 (2012) 459-468.
DOI URL |
[19] |
W. Ito, M. Nagasako, R.Y. Umetsu, R. Kainuma, T. Kanomata, K. Ishida, Appl. Phys. Lett. 93 (2008), 232503.
DOI URL |
[20] |
V. Recarte, J.I. Pérez-Landazábal, V. Sánchez-Alarcos, J.A. Rodríguez-Velamazán, Acta Mater. 60 (2012) 1937-1945.
DOI URL |
[21] |
A. Ghosh, K. Mandal, Appl. Phys. Lett. 104 (2014), 031905.
DOI URL |
[22] |
S. Li, Z. Yuan, L.Y. Lü, M. Liu, Z. Huang, F. Zhang, Y. Du, Mater. Sci. Eng. A 428 (2006) 332-335.
DOI URL |
[23] | S. Ghosh, S. Ghosh, Phys. Rev. B 99 (2019), 064112. |
[24] | N. Singh, E. Dogan, I. Karaman, R. Arroyave, Phys. Rev. B 84 (2011), 184201. |
[25] | M. Siewert, M.E. Gruner, A. Danneberg, A. Hucht, S.M. Shapiro, G. Xu, D.L. Schlagel, T.A. Lograsso, P. Entel, Phys. Rev. B 82 (2010), 064420. |
[26] | V.V. Sokolovskiy, V.D. Buchelnikov, M.A. Zagrebin, P. Entel, S. Sahoo, M. Ogura, Phys. Rev. B 86 (2012), 134418. |
[27] | V.D. Buchelnikov, P. Entel, S.V. Taskaev, V.V. Sokolovsky, A. Hucht, M. Ogura, H. Akai, M.E. Gruner, S.K. Nayak, Phys. Rev. B 78 (2008), 184427. |
[28] | Q.M. Hu, R. Yang, J.M. Lu, L. Wang, B. Johansson, L. Vitos, Phys. Rev. B 76 (2007), 224201. |
[29] | Q.M. Hu, C.M. Li, R. Yang, S.E. Kulkova, D.I. Bazhanov, B. Johansson, L. Vitos, Phys. Rev. B 79 (2009), 144112. |
[30] |
X.Z. Liang, J. Bai, J.L. Gu, J.L. Wang, H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Mater. 195 (2020) 109-122.
DOI URL |
[31] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[32] |
P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[33] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
[34] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[35] | C.M. Li, H.B. Luo, Q.M. Hu, R. Yang, B. Johansson, L. Vitos, Phys. Rev. B 86 (2012), 214205. |
[36] |
T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Ma˜nosa, A. Planes, Nat. Mater. 4 (2005) 450-454.
DOI URL |
[37] |
K. Oikawa, W. Ito, Y. Imano, Y. Sutou, R. Kainuma, K. Ishida, Appl. Phys. Lett. 88 (2006), 122507.
DOI URL |
[38] |
T. Miyamoto, W. Ito, R.Y. Umetsu, R. Kainuma, T. Kanomata, K. Ishida, Scr. Mater. 62 (2010) 151-154.
DOI URL |
[39] | C.M. Li, H.B. Luo, Q.M. Hu, R. Yang, B. Johansson, L. Vitos, Phys. Rev. B 82 (2010), 024201. |
[40] | A.T. Zayak, P. Entel, K.M. Rabe, W.A. Adeagbo, M. Acet, Phys. Rev. B 72 (2005), 054113. |
[41] |
S. Chatterjee, V.R. Singh, A.K. Deb, S. Giri, S.K. De, I. Dasgupta, S. Majumdar, J. Magn. Magn. Mater. 322 (2010) 102-107.
DOI URL |
[42] | J.J. Wei, Master Dissertation, Shandong University, Jinan, 2013. |
[43] |
X. Wang, J.X. Shang, F.H. Wang, C.B. Jiang, H.B. Xu, J. Magn. Magn. Mater. 355 (2014) 173-179.
DOI URL |
[44] |
Z. Wu, Z. Liu, H. Yang, Y. Liu, G. Wu, Appl. Phys. Lett. 98 (2011), 061904.
DOI URL |
[45] |
J. Bai, N. Xu, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Appl. Phys. 113 (2013), 174901.
DOI URL |
[46] |
C.D. Gelatt, A.R. Williams, V.L. Moruzzi, Phys. Rev. B 27 (1983) 2005-2013.
DOI URL |
[47] | Q.M. Hu, R. Yang, D.S. Xu, Y.L. Hao, D. Li, W.T. Wu, Phys. Rev. B 68 (2003), 054102. |
[48] | S.R. Barman, S. Banik, A. Chakrabarti, Phys. Rev. B 72 (2005), 184410. |
[49] |
M. Siewert, M.E. Gruner, A. Hucht, H.C. Herper, A. Dannenberg, A. Chakrabarti, N. Singh, R. Arroyave, P. Entel, Adv. Eng. Mater. 14 (2012) 530-546.
DOI URL |
[1] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[2] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
[3] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[4] | Yanhui Li, Xingjie Jia, Wei Zhang, Yan Zhang, Guoqiang Xie, Zhiyong Qiu, Junhua Luan, Zengbao Jiao. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65(0): 171-181. |
[5] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[6] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[7] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[8] | Dianguo Ma, Yingmin Wang, Yanhui Li, Umetsu Rie Y., Shuli Ou, Kunio Yubuta, Wei Zhang. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing [J]. J. Mater. Sci. Technol., 2020, 36(0): 128-133. |
[9] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
[10] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
[11] | Kim Jeong Tae, Hong Sung Hwan, Park Jin Man, Jürgen Eckert, Kim Ki Buem. New para-magnetic (CoFeNi)50(CrMo)50-x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties [J]. J. Mater. Sci. Technol., 2020, 43(0): 135-143. |
[12] | Qiaomu Liu, Shunzhou Huang, Aijie He. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35(12): 2814-2823. |
[13] | Yanli Lu, Fang Liu, Xiang Li, Feng Gao, Zheng Chen. First-Principles Study on the Stability and Electronic Properties of Bi-Doped Sr3Ti2O7 [J]. J. Mater. Sci. Technol., 2018, 34(5): 891-898. |
[14] | F. Wei, S. Ma, L. Yang, Y. Feng, J.Z. Wang, A. Hua, X.G. Zhao, D.Y. Geng, Z.D. Zhang. A new scale for optimized cryogenic magnetocaloric effect in ErAl2@Al2O3 nanocapsules [J]. J. Mater. Sci. Technol., 2018, 34(5): 848-854. |
[15] | Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34(12): 2325-2330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||