J. Mater. Sci. Technol. ›› 2021, Vol. 83: 102-112.DOI: 10.1016/j.jmst.2020.11.079
• Research Article • Previous Articles Next Articles
Yaxin Bia,1, Yanling Yanga,**,1(
), Xiao-Lei Shib,c, Lei Fenga, Xiaojiang Houa, Xiaohui Yea, Li Zhanga, Guoquan Suoa, Siyu Lud, Zhi-Gang Chenb,c,*(
)
Received:2020-09-15
Revised:2020-11-28
Accepted:2020-11-30
Published:2021-08-30
Online:2021-01-30
Contact:
Yanling Yang,Zhi-Gang Chen
About author:* Centre for Future Materials, University of SouthernQueensland, Springfield, QLD, 4300, Australia. E-mail addresses: zhigang.chen@usq.edu.au(Z.-G. Chen).1 These authors contribute equally to this work.
Yaxin Bi, Yanling Yang, Xiao-Lei Shi, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Guoquan Suo, Siyu Lu, Zhi-Gang Chen. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4[J]. J. Mater. Sci. Technol., 2021, 83: 102-112.
Fig. 1. SEM images of (a) BiVO4 and (b) Bi/BiVO4. (c) Schematic illustration for the morphology of the samples. (d-g) TEM images of BiVO4 and Bi/BiVO4. (h) EDS elemental mapping images of Bi/BiVO4.
Fig. 2. (a) XRD patterns of the pure BiVO4 and Bi/BiVO4. (b) Raman spectra of BiVO4 and Bi/BiVO4. (c) Schematic illustration for the synthesis progress of the two-step calcination.
Fig. 3. (a) The entire XPS spectra of the pure BiVO4 and Bi/BiVO4. (b) Bi 4f, (c) V 2p and (d) O 1s for BiVO4 and Bi/BiVO4. (e) FTIR spectra of BiVO4 and Bi/BiVO4. (f) The morphology of Bi/BiVO4 and the corresponding diameter distribution of mulberry-like particles.
Fig. 4. (a) UV-vis absorption spectra and (b) bandgap and VB-XPS curves of BiVO4 and Bi/BiVO4. (c) PL spectra, (d, e) photocatalytic degradation of RhB, (f) cycling runs of Bi/BiVO4 for the degradation of RhB and (g) the corresponding first-order plots of RhB photodegradation over BiVO4 and Bi/BiVO4. (h) Photocatalytic degradation and (i) the corresponding first-order plots of phenol photodegradation over BiVO4 and Bi/BiVO4.
| Catalyst | Pollutant | Degradation rate | ka (min-1) | R2 |
|---|---|---|---|---|
| BiVO4 | RhB | 13.6 % | 0.0143 | 0.8505 |
| Bi/BiVO4 | RhB | 80.9 % | 0.1979 | 0.9644 |
| BiVO4 | Phenol | 17.1 % | 0.031 | 0.9934 |
| Bi/BiVO4 | Phenol | 73.3 % | 0.2168 | 0.9817 |
Table 1 Degradation rate constants (ka) and relative coefficients (R2) in decomposing RhB and phenol.
| Catalyst | Pollutant | Degradation rate | ka (min-1) | R2 |
|---|---|---|---|---|
| BiVO4 | RhB | 13.6 % | 0.0143 | 0.8505 |
| Bi/BiVO4 | RhB | 80.9 % | 0.1979 | 0.9644 |
| BiVO4 | Phenol | 17.1 % | 0.031 | 0.9934 |
| Bi/BiVO4 | Phenol | 73.3 % | 0.2168 | 0.9817 |
Fig. 5. (a) EIS Nyquist plot of the BiVO4 and Bi/BiVO4 electrodes measured in 0.1 M Na2SO4. (b) Photocurrent responses of as-prepared samples. Comparison of (c) light absorption range [13,17,44,[57], [58], [59], [60], [61], [62], [63], [64], [65]] and (d) degradation rate with reported values [[66], [67], [68], [69], [70], [71], [72], [73]].
| Sample | Rs×10-2 (Ω) | Rct (Ω) | CPE×10-6 (F) |
|---|---|---|---|
| BiVO4 | 23.074 | 18.36 | 1.4565 |
| Bi/BiVO4 | 61.877 | 10.87 | 1.8762 |
Table 2 Resistance fitted according to the Nyquist plots of two samples.
| Sample | Rs×10-2 (Ω) | Rct (Ω) | CPE×10-6 (F) |
|---|---|---|---|
| BiVO4 | 23.074 | 18.36 | 1.4565 |
| Bi/BiVO4 | 61.877 | 10.87 | 1.8762 |
Fig. 7. Calculated structure of (a) Bi and (b) BiVO4, the corresponding energy band of (c) Bi and (d) BiVO4 and the corresponding PDOS of (e) Bi and (f) BiVO4.
Fig. 8. (a) Calculated structure and (b) band position of Bi/BiVO4. (c) The simulated free energy during the conversion from O2 to O·H radicals of Bi/BiVO4.
| [1] |
X. Hong, Y. Kang, C. Zhen, X. Kang, L.C. Yin, J.T.S. Irvine, L. Wang, G. Liu, H.M. Cheng, Sci. China Mater. 61 (2018) 831-838.
DOI URL |
| [2] |
M. Xing, J. Zhang, F. Chen, Appl. Catal. B: Environ. 89 (2009) 563-569.
DOI URL |
| [3] |
S. Chen, D. Huang, G. Zeng, W. Xue, L. Lei, P. Xu, R. Deng, J. Li, M. Cheng, Chem. Eng. J. 382 (2020) 122840.
DOI URL |
| [4] | C.A. Unsworth, B. Coulson, V. Chechik, R.E. Douthwaite, J. Catal. 354 (2017) 152-159. |
| [5] |
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269.
PMID |
| [6] |
M. Wang, Q. Liu, Y. Che, L. Zhang, D. Zhang, J. Alloys. Compd. 548 (2013) 70-76.
DOI URL |
| [7] |
J.Q. Li, Z.Y. Guo, H. Liu, J. Du, Z.F. Zhu, J. Alloys. Compd. 581 (2013) 40-45.
DOI URL |
| [8] |
C. Yin, S. Zhu, Z. Chen, W. Zhang, J. Gu, D. Zhang, J. Mater. Chem. A 1 (2013) 8367-8378.
DOI URL |
| [9] |
M. Wang, Y. Che, C. Niu, M. Dang, D. Dong, J. Rare Earths 31 (2013) 878-884.
DOI URL |
| [10] |
G. Liu, L. Wang, C. Sun, X. Yan, X. Wang, Z. Chen, S.C. Smith, H.M. Cheng, G.Q. Lu, Chem. Mater. 21 (2009) 1266-1274.
DOI URL |
| [11] |
G. Liu, L.C. Yin, J. Wang, P. Niu, C. Zhen, Y. Xie, H.M. Cheng, Energy Environ. Sci. 5 (2012) 9603-9610.
DOI URL |
| [12] |
Y. Jia, Z. Wang, Y. Ma, J. Liu, W. Shi, Y. Lin, X. Hu, K. Zhang, Electrochim. Acta 300 (2019) 138-144.
DOI URL |
| [13] |
S. Ullah, E.P. Ferreira-Neto, C. Hazra, R. Parveen, H.D. Rojas-Mantilla, M.L. Calegaro, Y.E. Serge-Correales, U.P. Rodrigues-Filho, S.J.L. Ribeiro, Appl. Catal. B: Environ. 243 (2019) 121-135.
DOI URL |
| [14] |
Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, ACS Appl. Mater. Interfaces 6 (2014) 14405-14414.
DOI URL |
| [15] |
V. Pasumarthi, T. Liu, M. Dupuis, C. Li, J. Mater. Chem. A 7 (2019) 3054-3065.
DOI |
| [16] |
Y. Zhang, M. Wang, G. Yang, Y. Qi, T. Chai, S. Li, T. Zhu, Sep. Purif. Technol. 202 (2018) 335-344.
DOI URL |
| [17] |
Y. Deng, L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng, H. Feng, J. Hazard. Mater. 344 (2018) 758-769.
DOI URL |
| [18] |
Y. Huang, H. Li, M.S. Balogun, W. Liu, Y. Tong, X. Lu, H. Ji, ACS Appl. Mater. Interfaces 6 (2014) 22920-22927.
DOI URL |
| [19] | Z. Zhao, W. Zhang, Y. Sun, J. Yu, Y. Zhang, H. Wang, F. Dong, Z. Wu, Bi J. Phys. Chem. C 120 (2016) 11889-11898. |
| [20] |
Z.G. Chen, X. Shi, L.D. Zhao, J. Zou, Prog. Mater. Sci. 97 (2018) 283-346.
DOI URL |
| [21] |
F. Dong, Q. Li, Y. Sun, W.K. Ho, ACS Catal. 4 (2014) 4341-4350.
DOI URL |
| [22] | J. Jia, P. Xue, R. Wang, X. Bai, X. Hu, J. Fan, E. Liu, J. Chem. Technol. Biotechnol. 93 (2018) 2988-2999. |
| [23] |
J. Li, W. Zhang, M. Ran, Y. Sun, H. Huang, F. Dong, Appl. Catal. B: Environ. 243 (2019) 313-321.
DOI URL |
| [24] |
Y. Guo, Y. Zhang, N. Tian, H. Huang, ACS Sustain. Chem. Eng. 4 (2016) 4003-4012.
DOI URL |
| [25] |
Y. Sun, Z. Zhao, F. Dong, W. Zhang, Phys. Chem. Chem. Phys. 17 (2015) 10383-10390.
DOI URL |
| [26] |
X.L. Shi, X. Tao, J. Zou, Z.G. Chen, Adv. Sci. 7 (2020) 1902923.
DOI URL |
| [27] |
J. Li, Y. Xie, Y. Zhong, Y. Hu, J. Mater. Chem. A 3 (2015) 5474-5481.
DOI URL |
| [28] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
PMID |
| [29] |
G.K.D. Joubert, Phys. Rev. B 59 (1999) 1758.
DOI URL |
| [30] |
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152 (2005) J23.
DOI URL |
| [31] |
X.W. Lou, L.A. Archer, Z. Yang, Adv. Mater. 20 (2008) 3987-4019.
DOI URL |
| [32] |
Q. Jing, X. Feng, J. Pan, L. Chen, Y. Liu, Dalton Trans. 47 (2018) 2602-2609.
DOI URL |
| [33] |
A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, Appl. Catal. A-Gen. 555 (2018) 47-74.
DOI URL |
| [34] |
Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Chem. Eng. J. 326 (2017) 411-418.
DOI URL |
| [35] |
Y. Lan, Z. Li, D. Li, W. Xie, G. Yan, S. Guo, Chem. Eng. J. 392 (2020) 123686.
DOI URL |
| [36] |
P. Jiménez-Calvo, C. Marchal, T. Cottineau, V. Caps, V. Keller, J. Mater. Chem. A 7 (2019) 14849-14863.
DOI URL |
| [37] |
Q. Hao, R. Wang, H. Lu, Ca. Xie, W. Ao, D. Chen, C. Ma, W. Yao, Y. Zhu, Appl. Catal. B: Environ. 219 (2017) 63-72.
DOI URL |
| [38] |
P. Chen, H. Liu, Y. Sun, J. Li, W. Cui, La. Wang, W. Zhang, X. Yuan, Z. Wang, Y. Zhang, F. Dong, Appl. Catal. B: Environ. 264 (2020) 118545.
DOI URL |
| [39] |
U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6 (2011) 534.
DOI PMID |
| [40] |
A. Galembeck, O.L. Alves, Thin Solid Films 365 (2000) 90-93.
DOI URL |
| [41] |
F.D. Hardcastle, I.E. Wachs, H. Eckert, D.A. Jefferson, J. Solid State Chem. 90 (1991) 194-210.
DOI URL |
| [42] |
J. Wang, Z. Zhang, X. Wang, Y. Shen, Y. Guo, P.K. Wong, R. Bai, Chin. J. Catal. 39 (2018) 1792-1803.
DOI URL |
| [43] |
A. Adenle, D.K. Ma, D.P. Qu, W. Chen, S. Huang, CrystEngComm 19 (2017) 6305-6313.
DOI URL |
| [44] |
D.K. Ma, M.L. Guan, S.S. Liu, Y.Q. Zhang, C.W. Zhang, Y.X. He, S.M. Huang, Dalton Trans. 41 (2012) 5581-5586.
DOI URL |
| [45] | J. Wang, W. Jiang, D. Liu, Z. Wei, Y. Zhu, Appl. Catal. B: Environ. 176- 177 (2015) 306-314. |
| [46] |
R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, J. Raman Spectrosc. 37 (2006) 722-732.
DOI URL |
| [47] |
Z. Wang, C. Jiang, R. Huang, H. Peng, X. Tang, J. Phys. Chem. C 118 (2014) 1155-1160.
DOI URL |
| [48] |
Y. Yu, C. Cao, H. Liu, P. Li, F. Wei, Y. Jiang, W. Song, J. Mater. Chem. A 2 (2014) 1677-1681.
DOI URL |
| [49] |
K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Appl. Catal. B: Environ. 68 (2006) 125-129.
DOI URL |
| [50] |
M.L. Guan, D.K. Ma, S.W. Hu, Y.J. Chen, S.M. Huang, Inorg. Chem. 50 (2011) 800-805.
DOI URL |
| [51] |
J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Catal. Commun. 13 (2011) 63-68.
DOI URL |
| [52] |
C.C. Shen, Q. Zhu, Z.W. Zhao, T. Wen, X. Wang, A.W. Xu, J. Mater. Chem. A 3 (2015) 14661-14668.
DOI URL |
| [53] |
S. Weng, B. Chen, L. Xie, Z. Zheng, P. Liu, J. Mater. Chem. A 1 (2013) 3068-3075.
DOI URL |
| [54] |
K.H. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang, W. Mai, Nano Energy 18 (2015) 222-231.
DOI URL |
| [55] |
J.L. Song, X. Wang, C.C. Wong, Electrochim. Acta. 173 (2015) 834-838.
DOI URL |
| [56] | H.J. Chen, Y.L. Yang, M. Hong, J.G. Chen, G.Q. Suo, X.J. Hou, L. Feng, Z.G. Chen, Sustain. Mater. Technol. 21 (2019) e00105. |
| [57] |
Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, A. Xia, L. Lv, Y. Liu, Appl. Catal. B: Environ. 234 (2018) 37-49.
DOI URL |
| [58] |
Y. Zhu, M.W. Shah, C. Wang, Appl. Catal. B: Environ. 203 (2017) 526-532.
DOI URL |
| [59] |
F. Chen, Q. Yang, Y. Wang, J. Zhao, D. Wang, X. Li, Z. Guo, H. Wang, Y. Deng, C. Niu, G. Zeng, Appl. Catal. B: Environ. 205 (2017) 133-147.
DOI URL |
| [60] |
S. Bao, Q. Wu, S. Chang, B. Tian, J. Zhang, Catal. Sci. Technol. 7 (2017) 124-132.
DOI URL |
| [61] |
J. Zhang, Y. Lu, L. Ge, C. Han, Y. Li, Y. Gao, S. Li, H. Xu, Appl. Catal. B: Environ 204 (2017) 385-393.
DOI URL |
| [62] |
F.Q. Zhou, J.C. Fan, Q.J. Xu, Y.L. Min, Appl. Catal. B: Environ. 201 (2017) 77-83.
DOI URL |
| [63] |
F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie, Y. Deng, Appl. Catal. B: Environ. 200 (2017) 330-342.
DOI URL |
| [64] |
J. Zhang, F. Ren, M. Deng, Y. Wang, Phys. Chem. Chem. Phys. 17 (2015) 10218-10226.
DOI URL |
| [65] | C. Li, S. Wang, T. Wang, Y. Wei, P. Zhang, J. Gong, Small 10 (2014), 2782-2782. |
| [66] |
T. Liu, G. Tan, C. Zhao, C. Xu, Y. Su, Y. Wang, H. Ren, A. Xia, D. Shao, S. Yan, Appl. Catal. B: Environ. 213 (2017) 87-96.
DOI URL |
| [67] | C. Regmi, Y.K. Kshetri, T.H. Kim, R.P. Pandey, S.W. Lee, Mol. Catal. 432 (2017) 220-231. |
| [68] |
Y. Geng, P. Zhang, N. Li, Z. Sun, J. Alloys. Compd. 651 (2015) 744-748.
DOI URL |
| [69] |
Z. Liu, Q. Lu, C. Wang, J. Liu, G. Liu, J. Alloys. Compd. 651 (2015) 29-33.
DOI URL |
| [70] |
Y. Lu, Y.S. Luo, H.M. Xiao, S.Y. Fu, CrystEngComm 16 (2014) 6059-6065.
DOI URL |
| [71] |
U.M. García-Pérez, A.Martínez-de la Cruz, S. Sepúlveda-Guzmán, J. Peral, Ceram. Int. 40 (2014) 4631-4638.
DOI URL |
| [72] |
S. Chaiwichian, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Mater. Res. Bull. 54 (2014) 28-33.
DOI URL |
| [73] |
K. Natarajan, H.C. Bajaj, R.J. Tayade, Sol. Energy 148 (2017) 87-97.
DOI URL |
| [74] |
C. Zheng, C. Cao, Z. Ali, Phys. Chem. Chem. Phys. 17 (2015) 13347-13354.
DOI URL |
| [75] |
M. Sun, W. Zhang, Y. Sun, Y. Zhang, F. Dong, Chin. J. Catal. 40 (2019) 826-836.
DOI URL |
| [76] |
H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 482-492.
DOI URL |
| [77] |
H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Angew. Chem. Int. Ed. 56 (2017) 11860-11864.
DOI URL |
| [78] |
L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang, T. Ma, Adv. Mater. 31 (2019) 1900546.
DOI URL |
| [79] |
M. Li, S. Yu, H. Huang, X. Li, Y. Feng, C. Wang, Y. Wang, T. Ma, L. Guo, Y. Zhang, Angew. Chem.-Int. Edit. 58 (2019) 9517-9521.
DOI URL |
| [80] |
J. Safaei, H. Ullah, N.A. Mohamed, M.F. Mohamad Noh, M.F. Soh, A.A. Tahir, N. Ahmad Ludin, M.A. Ibrahim, W.N.R. Wan Isahak, M.A. Mat Teridi, Appl. Catal. B: Environ. 234 (2018) 296-310.
DOI URL |
| [81] |
L. Liu, H. Huang, F. Chen, H. Yu, N. Tian, Y. Zhang, T. Zhang, Sci. Bull. 65 (2020) 934-943.
DOI URL |
| [82] |
Y. Yang, H. Chen, X. Zou, X.L. Shi, W.D. Liu, L. Feng, G. Suo, X. Hou, X. Ye, L. Zhang, C. Sun, H. Li, C. Wang, Z.G. Chen, ACS Appl. Mater. Interfaces 12 (2020) 24845-24854.
DOI URL |
| [83] |
Fang Li, Wei Zhao, D.Y.C. Leung, Appl.Catal. B: Environ. 258 (2019) 117954.
DOI URL |
| [1] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
| [2] | Xu Han, Jianhua Wu, Xianhui Zhang, Junyou Shi, Jiaxin Wei, Yang Yang, Bo Wu, Yonghui Feng. Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61(0): 46-62. |
| [3] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
| [4] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
| [5] | Chuan Wang, Hai Long, Lijiao Zhou, Chao Shen, Wei Tang, Xiaodong Wang, Bingbing Tian, Le Shao, Zhanyuan Tian, Haijun Su, Keyu Xie. A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 121-127. |
| [6] | Fu Zhang, Zhu Ma, Taotao Hu, Rui Liu, Qiaofeng Wu, Yu Yue, Hua Zhang, Zheng Xiao, Meng Zhang, Wenfeng Zhang, Xin Chen, Hua Yu. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 66(0): 150-156. |
| [7] | Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification [J]. J. Mater. Sci. Technol., 2021, 66(0): 157-162. |
| [8] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
| [9] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
| [10] | Hua Zhang, Jia Zhuang, Xingchong Liu, Zhu Ma, Heng Guo, Ronghong Zheng, Shuangshuang Zhao, Fu Zhang, Zheng Xiao, Hanyu Wang, Haimin Li. Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77% [J]. J. Mater. Sci. Technol., 2021, 82(0): 40-46. |
| [11] | Chunhai Jiang, Wenyang Zhou, Zhimin Zou. Nitrogen and oxygen co-doped mesoporous carbon spheres as capacitive anode for high performance sodium-ion capacitors [J]. J. Mater. Sci. Technol., 2021, 83(0): 188-195. |
| [12] | Milad Ghayoor, Saereh Mirzababaei, Anumat Sittiho, Indrajit Charit, Brian K. Paul, Somayeh Pasebani. Thermal stability of additively manufactured austenitic 304L ODS alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 208-218. |
| [13] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
| [14] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
| [15] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
