J. Mater. Sci. Technol. ›› 2021, Vol. 83: 188-195.DOI: 10.1016/j.jmst.2020.12.039
• Research Article • Previous Articles Next Articles
Chunhai Jiang*(), Wenyang Zhou, Zhimin Zou*(
)
Received:
2020-11-05
Revised:
2020-12-11
Accepted:
2020-12-15
Published:
2021-01-30
Online:
2021-01-30
Contact:
Chunhai Jiang,Zhimin Zou
About author:
zmzou@xmut.edu.cn (Z. Zou).Chunhai Jiang, Wenyang Zhou, Zhimin Zou. Nitrogen and oxygen co-doped mesoporous carbon spheres as capacitive anode for high performance sodium-ion capacitors[J]. J. Mater. Sci. Technol., 2021, 83: 188-195.
Fig. 1. SEM images of the spherical MnO2 template (a), polypyrrole (b), and N, O co-doped carbon spheres (c), TEM images and high resolution TEM images of NCS500 (d and e) and NCS900 (h and h), HADDF images of NCS500 (f) and NCS900 (i), and the element mappings for C, N and O taken in the same area.
Fig. 2. XRD patterns (a), Raman spectra (b), XPS C 1s (c), N 1s (d), O 1s (e) core scans and pore diameter distributions (f) of NCS500, NCS700 and NCS900.
Fig. 3. The CV curves of NCS500 in the first three cycles (a) and those at the third cycle for NCS500, NCS700 and NCS900 (b) measured at 0.1 mV s-1, the galvonostatic discharge/charge profiles for NCS500 measured at 50 mA g-1 (c), rate capability (d) and the typical discharge/charge profiles taken from different current densities for NCS500 (e); and cycle performance of all three samples at 500 mA g-1 (f).
Sample | Initial reversible capacity (mA h g-1) | Initial Coulombic efficiency | Rate capability (mA h g-1 at 1 A g-1) | Refs. |
---|---|---|---|---|
N-doped ordered mesoporous carbon | 209.4 at 0.1 A g-1 | 22.4% | 108.6 | [ |
N-doped carbon nanofibers | 293 at 0.05 A g-1 | 38.8% | 150 | [ |
N-doped carbon sheets | 168 at 0.2 1 A g-1 | 26.4% | 97 | [ |
N-doped carbon microspheres | 405.4 at 0.05 A g-1 | 30.6% | 154 | [ |
N/S co-doped mesoporous carbon | 452 at 0.14 A g-1 | 28% | 102 at 1.4 A g-1 | [ |
N-doped porous carbon | 419 at 0.1 A g-1 | 33.7% | 193 | [ |
N-doped carbon microspheres | 595 at 0.05 A g-1 | 45.3% | 102 | [ |
Carbon nanofiber@N-doped porous carbon | 222.5 at 0.A g-1 | 29.4% | 140 | [ |
NCS500 | 243 at 0.05 A g-1 | 43.2 % | 160 | This work |
Table 1 Performance comparison of NCS500 versus state-of-the-art anode carbons of SIBs reported in literatures.
Sample | Initial reversible capacity (mA h g-1) | Initial Coulombic efficiency | Rate capability (mA h g-1 at 1 A g-1) | Refs. |
---|---|---|---|---|
N-doped ordered mesoporous carbon | 209.4 at 0.1 A g-1 | 22.4% | 108.6 | [ |
N-doped carbon nanofibers | 293 at 0.05 A g-1 | 38.8% | 150 | [ |
N-doped carbon sheets | 168 at 0.2 1 A g-1 | 26.4% | 97 | [ |
N-doped carbon microspheres | 405.4 at 0.05 A g-1 | 30.6% | 154 | [ |
N/S co-doped mesoporous carbon | 452 at 0.14 A g-1 | 28% | 102 at 1.4 A g-1 | [ |
N-doped porous carbon | 419 at 0.1 A g-1 | 33.7% | 193 | [ |
N-doped carbon microspheres | 595 at 0.05 A g-1 | 45.3% | 102 | [ |
Carbon nanofiber@N-doped porous carbon | 222.5 at 0.A g-1 | 29.4% | 140 | [ |
NCS500 | 243 at 0.05 A g-1 | 43.2 % | 160 | This work |
Fig. 4. The CV curves measured at various scan rates for NCS500 (a), NCS700 (d), and NCS900 (g), capacitive contribution to the current response of NCS500 (b), NCS700 (e), and NCS900 (h), and the CV curves with specific capacitive contributions at 1.0 mV s-1 for NCS500 (c), NCS700 (f), and NCS900 (i).
Fig. 5. Tests of the SIC with NCS500 as anode and commercial YEC-8B as cathode, (a) cyclic voltammetry curves (0-4.0 V) at various scan rates, (b) galvonostatic charge-discharge profiles at current density ranging from 0.1 A g-1 to 5 A g-1, (c) Ragone plots of the SIC and those reported previously, and (d) capacitance retention and coulombic efficiency at 0.1 A g-1.
Type of SICs | Current density (A g-1) | Cycle number | Capacity retention (%) | Refs. |
---|---|---|---|---|
m-Nb2O5@C//AC | 1 | 2000 | ∼81.3 | [ |
V2O5@graphene//AC | 0.06 | 1000 | 74 | [ |
HAT550@ZTC//STC16 | 1 | 1000 | 91.5 | [ |
HPC-550//HPC-800 | 3.5 | 2500 | 81.1 | [ |
Na-TNT//graphite | 0.25 | 1000 | 80 | [ |
CS-800//CS-800-6 | 1 | 2000 | 85.7 | [ |
Na2Ti3O7@CNT//AC | 0.4 | 4000 | 75 | [ |
NCS500//AC | 1 | 2500 | 84.6 | This work |
Table 2 Comparison of the cycle performance of different SICs.
Type of SICs | Current density (A g-1) | Cycle number | Capacity retention (%) | Refs. |
---|---|---|---|---|
m-Nb2O5@C//AC | 1 | 2000 | ∼81.3 | [ |
V2O5@graphene//AC | 0.06 | 1000 | 74 | [ |
HAT550@ZTC//STC16 | 1 | 1000 | 91.5 | [ |
HPC-550//HPC-800 | 3.5 | 2500 | 81.1 | [ |
Na-TNT//graphite | 0.25 | 1000 | 80 | [ |
CS-800//CS-800-6 | 1 | 2000 | 85.7 | [ |
Na2Ti3O7@CNT//AC | 0.4 | 4000 | 75 | [ |
NCS500//AC | 1 | 2500 | 84.6 | This work |
[1] |
G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, J. Electrochem. Soc. 148 (2001) A930.
DOI URL |
[2] |
C. Jiang, J. Zhao, H. Wu, Z. Zou, R. Huang, J. Power Sources 401 (2018) 135-141.
DOI URL |
[3] |
R. Jia, G. Shen, D. Chen, Sci. Chin. Mater 63 (2019) 185-206.
DOI URL |
[4] |
Y. Zhang, J. Jiang, Y. An, L. Wu, H. Dou, J. Zhang, Y. Zhang, S. Wu, M. Dong, X. Zhang, Z. Guo, ChemSusChem 13 (2020) 2522-2539.
DOI PMID |
[5] |
Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, ACS Nano 6 (2012) 4319-4327.
DOI URL |
[6] |
S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng, X. Zhang, J. Mater. Chem. A 3 (2015) 21277-21283.
DOI URL |
[7] |
Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H.B. Wu, Y. Lu, ACS Nano 11 (2017) 2952-2960.
DOI URL |
[8] |
Y. Wu, X. Fan, R.R. Gaddam, Q. Zhao, D. Yang, X. Sun, C. Wang, X.S. Zhao, J. Power Sources 408 (2018) 82-90.
DOI URL |
[9] | C. Deng, C. Ma, M.L. Lau, P. Skinner, Y. Liu, W. Xu, H. Zhou, Y. Ren, Y. Yin, B. Williford, M. Dahl, H. Xiong, Electrochim. Acta 321 (2019), 134723. |
[10] |
K. Zou, P. Cai, C. Liu, J. Li, X. Gao, L. Xu, G. Zou, H. Hou, Z. Liu, X. Ji, J. Mater. Chem. A 7 (2019) 13540-13549.
DOI URL |
[11] |
H. Zhang, M. Hu, Z.-H. Huang, F. Kang, R. Lv, Prog. Nat. Sci. Mater. Int. 30 (2020) 13-19.
DOI URL |
[12] |
K. Wang, Y. Jin, S. Sun, Y. Huang, J. Peng, J. Luo, Q. Zhang, Y. Qiu, C. Fang, J. Han, ACS Omega 2 (2017) 1687-1695.
DOI PMID |
[13] |
X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu, D. Buchholz, D. Bresser, S. Komaba, S. Passerini, Mater. Today 23 (2019) 87-104.
DOI URL |
[14] |
R. Väli, A. Jänes, T. Thomberg, E. Lust, Electrochim. Acta 253 (2017) 536-544.
DOI URL |
[15] |
X. Gao, G. Zhu, X. Zhang, T. Hu, Microporous Mesoporous Mater. 273 (2019) 156-162.
DOI URL |
[16] |
Y. Qu, Z. Zhang, K. Du, W. Chen, Y. Lai, Y. Liu, J. Li, Carbon 105 (2016) 103-112.
DOI URL |
[17] | Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu, M. Xia, R. Zheng, M. Shui, J. Shu, Energy Storage Mater. 32 (2020) 65-90. |
[18] |
D.-Y. Kim, O.L. Li, J. Kang, Carbon 168 (2020) 448-457.
DOI URL |
[19] |
H. Wang, J.-L. Lan, H. Yuan, S. Luo, Y. Huang, Y. Yu, Q. Cai, X. Yang, Appl. Surf. Sci. 518 (2020), 146221.
DOI URL |
[20] |
D. Qin, Z. Liu, Y. Zhao, G. Xu, F. Zhang, X. Zhang, Carbon 130 (2018) 664-671.
DOI URL |
[21] | R. Yan, K. Leus, J.P. Hofmann, M. Antonietti, M. Oschatz, Nano Energy 67 (2020), 104240. |
[22] |
Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, M. Gu, L.V. Saraf, G. Exarhos, J.G. Zhang, J. Liu, Nano Lett. 13 (2013) 3909-3914.
DOI URL |
[23] |
C. Chen, Y. Huang, Z. Meng, M. Lu, Z. Xu, P. Liu, T. Li, J. Mater. Sci. Technol. 76 (2021) 11-19.
DOI URL |
[24] |
C. Jiang, J. Wang, Z. Chen, Z. Yu, Z. Lin, Z. Zou, Electrochim. Acta 245 (2017) 279-286.
DOI URL |
[25] |
L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Nanoscale 6 (2014) 6590-6602.
DOI URL |
[26] |
V. Selvamani, R. Ravikumar, V. Suryanarayanan, D. Velayutham, S. Gopukumar, Electrochim. Acta 190 (2016) 337-345.
DOI URL |
[27] |
N.P. Wickramaratne, J. Xu, M. Wang, L. Zhu, L. Dai, M. Jaroniec, Chem. Mater. 26 (2014) 2820-2828.
DOI URL |
[28] |
B. Liu, J. Wang, J. Li, K. Fan, D. Zhao, G. Liu, C. Yang, H. Tong, D. Qian, J. Phys. Chem. Solids 134 (2019) 214-224.
DOI URL |
[29] | M. Wang, Z. Yang, W. Li, L. Gu, Y. Yu, Small 12 (2016), 2529-2529. |
[30] |
H. Zhang, M. Lu, H. Wang, Y. Lyu, D. Li, S. Sun, J. Shi, W. Liu, Sustain. Energy Fuels 2 (2018) 2314-2324.
DOI URL |
[31] |
F. Zhang, D. Qin, J. Xu, Z. Liu, Y. Zhao, X. Zhang, Electrochim. Acta 303 (2019) 140-147.
DOI |
[32] |
G. Pan, F. Cao, Y. Zhang, X. Xia, J. Mater. Sci. Technol. 55 (2020) 144-151.
DOI URL |
[33] |
T. Wu, L. Sun, F. Xu, D. Cai, J. Mater. Sci. Technol. 34 (2018) 2384-2391.
DOI URL |
[34] |
Y. Qu, M. Guo, X. Wang, C. Yuan, J. Alloys. Compd. 791 (2019) 874-882.
DOI URL |
[35] |
J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Carbon 94 (2015) 189-195.
DOI URL |
[36] |
F. Yang, Z. Zhang, K. Du, X. Zhao, W. Chen, Y. Lai, J. Li, Carbon 91 (2015) 88-95.
DOI URL |
[37] | W. Xiong, Z. Wang, J. Zhang, C. Shang, M. Yang, L. He, Z. Lu, Energy Storage Mater. 7 (2017) 229-235. |
[38] |
M. Duan, F. Zhu, G. Zhao, J. Hu, H. Zhang, G. Ren, Y. Meng, Z. Fan, Microporous Mesoporous Mater. 306 (2020), 110433.
DOI URL |
[39] |
J. Ou, L. Yang, Z. Zhang, X. Xi, Microporous Mesoporous Mater. 237 (2017) 23-30.
DOI URL |
[40] |
C. Karthikeyan, G.N. Suresh Babu, S. Maruthamuthu, N. Kalaiselvi, J. Colloid Interface Sci. 554 (2019) 9-18.
DOI URL |
[41] |
Z. Zhang, J. Zhang, X. Zhao, F. Yang, Carbon 95 (2015) 552-559.
DOI URL |
[42] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abru ˜na, P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518-522.
DOI URL |
[43] |
S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao, Q. Li, P. Zuo, B. Wang, Y. Gao, Y. Ma, C. Du, G. Yin, X. Sun, Nano Energy 34 (2017) 15-25.
DOI URL |
[44] |
Y. Ding, Y. Li, J. Li, X. Yan, Chin. Chem. Lett. 31 (2020) 2219-2224.
DOI URL |
[45] |
L. Zhao, L. Qi, H. Wang, J. Power Sources 242 (2013) 597-603.
DOI URL |
[46] |
E. Lim, C. Jo, M.S. Kim, M.-H. Kim, J. Chun, H. Kim, J. Park, K.C. Roh, K. Kang, S. Yoon, J. Lee, Adv. Funct. Mater. 26 (2016) 3711-3719.
DOI URL |
[47] |
R. Kiruthiga, C. Nithya, R. Karvembu, B.V.R. Reddy, Electrochim. Acta 256 (2017) 221-231.
DOI URL |
[48] |
S. Wang, R. Wang, Y. Zhang, D. Jin, L. Zhang, J. Power Sources 379 (2018) 33-40.
DOI URL |
[1] | Muhammad Zubair, Errui Wang, Yinzhong Wang, Boya Wang, Lin Wang, Yuan Liang, Haijun Yu. Suppression of voltage decay through adjusting tap density of lithium-rich layered oxides for lithium ion battery [J]. J. Mater. Sci. Technol., 2020, 58(0): 107-113. |
[2] | Zhuosen Wang, Xijun Xu, Shaomin Ji, Zhengbo Liu, Dechao Zhang, Jiadong Shen, Jun Liu. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 56-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||