J. Mater. Sci. Technol. ›› 2021, Vol. 78: 121-130.DOI: 10.1016/j.jmst.2020.10.062
• Review Article • Previous Articles Next Articles
Yao Chena, Jie Chenb, Bin Zhangc, Meiling Yanga, Xiaofang Liua, Hengyang Wanga, Lei Yangb, Guoyu Wangd, Guang Hana,*(), Xiaoyuan Zhouc,e,**(
)
Received:
2020-09-08
Revised:
2020-10-07
Accepted:
2020-10-09
Published:
2021-07-10
Online:
2020-11-21
Contact:
Guang Han,Xiaoyuan Zhou
About author:
**College of Physics, Chongqing University, Chongqing401331, China.E-mail addresses:xiaoyuan2013@cqu.edu.cn(X. Zhou).Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering[J]. J. Mater. Sci. Technol., 2021, 78: 121-130.
Fig. 2. XRD patterns for the SnSe-xCu2S (x = 0, 0.5%, 1%, 3%, 5%) sintered pellets measured (a) parallel and (b) perpendicular to the pressing direction (indicated in the insets).
Fig. 3. Cross-sectional SEM images of fractured surfaces for sintered SnSe-xCu2S pellets: (a and d) x = 0.5%, (b and e) x = 3%, (c and f) x = 5%. (a-c) perpendicular and (d-f) parallel to the pressing directions that are indicated by blue arrows in the images. The insets indicate the corresponding pellet orientation and the viewing directions.
Fig. 4. TEM characterization of the SnSe-3%Cu2S sintered sample: (a) HAADF-STEM image, (b) EDS mappings, (c and e) SAED patterns collected from particle “A” and “B” labelled in (a), which are indexed along the [001] zone axis of SnSe and the [011] zone axis of Cu2SnSe3, respectively, (d and f) the corresponding HRTEM images.
Fig. 5. TEM characterization of the SnSe-0.5%Cu2S sintered sample: (a) HAADF-STEM image, (b) EDS elemental maps of Sn, Se, Cu and S, (c) TEM image, HAADF image, EDS mapping of another region, (d) SAED pattern collected from particle “A” in (c), (e) the corresponding HRTEM image.
Fig. 6. Temperature dependent thermoelectric performance of SnSe-xCu2S (x = 0, 0.5%, 1%, 3%, 5%) pellets: (a) electrical conductivity (σ), (b) Seebeck coefficient (S), (c) power factor (S2σ), (d) total (κtot) and (e) lattice (κlat) thermal conductivity, (f) zT.
SnSe-xCu2S pellets | σ (S m-1) | nH (1018 cm-3) | μH (cm2 V-1 s-1) |
---|---|---|---|
x = 0 | 1760 | 10.9 | 10.1 |
x = 0.5% | 1260 | 7.8 | 10.1 |
x = 1% | 820 | 5.4 | 9.5 |
x = 3% | 2850 | 18.1 | 9.8 |
x = 5% | 5100 | 35.1 | 9.1 |
Table 1 Electrical conductivity (σ), Hall carrier concentration (nH) and carrier mobility (μH) at room temperature of SnSe-xCu2S (x = 0, 0.5%, 1%, 3%, 5%).
SnSe-xCu2S pellets | σ (S m-1) | nH (1018 cm-3) | μH (cm2 V-1 s-1) |
---|---|---|---|
x = 0 | 1760 | 10.9 | 10.1 |
x = 0.5% | 1260 | 7.8 | 10.1 |
x = 1% | 820 | 5.4 | 9.5 |
x = 3% | 2850 | 18.1 | 9.8 |
x = 5% | 5100 | 35.1 | 9.1 |
[1] |
J. Baxter, Z. Bian, G. Chen, D. Danielson, M.S. Dresselhaus, A.G. Fedorov, T.S. Fisher, C.W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D.R. Rolison, T. Sands, L. Shi, D. Sholl, Y. Wu, Energy Environ. Sci. 2(2009) 559-588.
DOI URL |
[2] |
J. He, T.M. Tritt, Science 357(2017), eaak9997.
DOI URL |
[3] |
L.D. Zhao, C. Chang, G.J. Tan, M.G. Kanatzidis, Energy Environ. Sci. 9(2016) 3044-3060.
DOI URL |
[4] |
Z.G. Chen, X.L. Shi, L.D. Zhao, J. Zou, Prog. Mater. Sci. 97(2018) 283-346.
DOI URL |
[5] |
M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19(2007) 1043-1053.
DOI URL |
[6] |
Y. Xiao, L.D. Zhao, Science 367(2020) 1196-1197.
DOI URL |
[7] |
G.J. Snyder, E.S. Toberer, Nat. Mater. 7(2008) 105-114.
DOI URL |
[8] |
X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev. 120(2020) 7399-7515.
DOI URL |
[9] |
G. Han, Z.-G. Chen, J. Drennan, J. Zou, Small 10(2014) 2747-2765.
DOI URL |
[10] | W.-D. Liu, L. Yang, Z.-G. Chen, Nano Today 35 (2020), 100938. |
[11] |
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature 473(2011) 66-69.
DOI URL |
[12] | H. Wu, X. Lu, G. Wang, K. Peng, B. Zhang, Y. Chen, X. Gong, X. Tang, X. Zhang, Z. Feng, G. Han, Y. Zhang, X. Zhou, Nano Energy 76 (2020), 105084. |
[13] | Y.B. Luo, Y. Zheng, Z.Z. Luo, S.Q. Hao, C.F. Du, Q.H. Liang, Z. Li, K.A. Khor, K. Hippalgaonkar, J.W. Xu, Q.Y. Yan, C. Wolverton, M.G. Kanatzidis, Adv. Energy Mater. 8(2018), 1702167. |
[14] | H. Wang, X. Liu, B. Zhang, L. Huang, M. Yang, X. Zhang, H. Zhang, G. Wang, X. Zhou, G. Han, Chem. Eng. J. 393(2020), 124763. |
[15] |
X. Tang, B. Zhang, X. Zhang, S. Wang, X. Lu, G. Han, G. Wang, X. Zhou, ACS Appl. Mater. Interfaces 12(2020) 8359-8365.
DOI URL |
[16] |
J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Energy Environ. Sci. 5(2012) 5510-5530.
DOI URL |
[17] |
Q. Zhang, B.L. Liao, Y.C. Lan, K. Lukas, W.S. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z.F. Ren, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 13261-13266.
DOI URL |
[18] |
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320(2008) 634-638.
DOI URL |
[19] | A.J. Zhang, B. Zhang, W. Lu, D.D. Xie, H.X. Ou, X.D. Han, J.Y. Dai, X. Lu, G. Han, G.Y. Wang, X.Y. Zhou, Adv. Funct. Mater. 28(2018), 1705117. |
[20] |
G. Han, R.Z. Zhang, S.R. Popuri, H.F. Greer, M.J. Reece, J.W.G. Bos, W.Z. Zhou, A.R. Knox, D.H. Gregory, Materials 10(2017) 233.
DOI URL |
[21] |
G. Han, Z.-G. Chen, L. Yang, M. Hong, J. Drennan, J. Zou, ACS Appl. Mater. Interfaces 7(2015) 989-995.
DOI URL |
[22] |
K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489(2012) 414-418.
DOI URL |
[23] |
L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508(2014) 373-377.
DOI URL |
[24] |
K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci. 9(2016) 454-460.
DOI URL |
[25] |
L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351(2015) 141-144.
DOI URL |
[26] | A.T. Duong, V.Q. Nguyen, G. Duvjir, V.T. Duong, S. Kwon, J.Y. Song, J.K. Lee, J.E. Lee, S. Park, T. Min, J. Lee, J. Kim, S. Cho, Nat. Commun. 7(2016) 13713. |
[27] |
C. Chang, M.H. Wu, D.S. He, Y.L. Pei, C.F. Wu, X.F. Wu, H.L. Yu, F.Y. Zhu, K.D. Wang, Y. Chen, L. Huang, J.F. Li, J.Q. He, L.D. Zhao, Science 360(2018) 778-782.
DOI URL |
[28] |
K.L. Peng, B. Zhang, H. Wu, X.L. Cao, A. Li, D.F. Yang, X. Lu, G.Y. Wang, X.D. Han, C. Uher, X.Y. Zhou, Mater. Today 21(2018) 501-507.
DOI URL |
[29] |
B. Qin, W. He, L.D. Zhao, J. Materiomics 6(2020) 671-676.
DOI URL |
[30] |
B. Qin, Y. Zhang, D. Wang, Q. Zhao, B. Gu, H. Wu, H. Zhang, B. Ye, S.J. Pennycook, L.D. Zhao, J. Am. Chem. Soc. 142(2020) 5901-5909.
DOI URL |
[31] | S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, B. Lenoir, Appl. Phys. Lett. 104(2014), 212105. |
[32] | C.L. Chen, H. Wang, Y.Y. Chen, T. Day, G.J. Snyder, J. Mater. Chem. A 2(2014) 11171-11176. |
[33] |
T.-R. Wei, G. Tan, X. Zhang, C.-F. Wu, J.-F. Li, V.P. Dravid, G.J. Snyder, M.G. Kanatzidis, J. Am. Chem. Soc. 138(2016) 8875-8882.
DOI URL |
[34] |
Y.-X. Chen, Z.-H. Ge, M. Yin, D. Feng, X.-Q. Huang, W. Zhao, J. He, Adv. Funct. Mater. 26(2016) 6836-6845.
DOI URL |
[35] |
C. Li, H. Wu, B. Zhang, H. Zhu, Y. Fan, X. Lu, X. Sun, X. Zhang, G. Wang, X. Zhou, ACS Appl. Mater. Interfaces 12(2020) 8446-8455.
DOI URL |
[36] | S.J. Liang, J.T. Xu, J.G. Noudem, H.X. Wang, X.J. Tan, G.Q. Liu, H.Z. Shao, B. Yu, S. Yue, J. Jiang, J. Mater. Chem. A 6(2018) 23730-23735. |
[37] | Q. Zhang, E.K. Chere, J.Y. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z.F. Ren, Adv. Energy Mater. 5(2015), 1500360. |
[38] |
Y.M. Han, J. Zhao, M. Zhou, X.X. Jiang, H.Q. Leng, L.F. Li, J. Mater. Chem. A 3(2015) 4555-4559.
DOI URL |
[39] |
G. Han, S.R. Popuri, H.F. Greer, R.Z. Zhang, L. Ferre-Llin, J.W.G. Bos, W.Z. Zhou, M.J. Reece, D.J. Paul, A.R. Knox, D.H. Gregory, Chem. Sci. 9(2018) 3828-3836.
DOI URL |
[40] |
C.C. Lin, R. Lydia, J.H. Yun, H.S. Lee, J.S. Rhyee, Chem. Mater. 29(2017) 5344-5352.
DOI URL |
[41] |
Y.K. Lee, Z. Luo, S.P. Cho, M.G. Kanatzidis, I. Chung, Joule 3(2019) 719-731.
DOI URL |
[42] |
J. Sheng, X. Liu, C. Niu, Y. Sun, Y. Chen, H. Wang, B. Zhang, G. Wang, X. Zhou, G. Han, J. Mater. Chem. C 8(2020) 10333-10341.
DOI URL |
[43] |
Y. Zheng, Y.B. Luo, C.F. Du, B.B. Zhu, Q.H. Liang, H.H. Hng, K. Hippalgaonkar, J.W. Xu, Q.Y. Yan, Mater. Chem. Front. 1(2017) 2457-2473.
DOI URL |
[44] |
R. Nunna, P.F. Qiu, M.J. Yin, H.Y. Chen, R. Hanus, Q.F. Song, T.S. Zhang, M.Y. Chou, M.T. Agne, J.Q. He, G.J. Snyder, X. Shi, L.D. Chen, Energy Environ. Sci. 10(2017) 1928-1935.
DOI URL |
[45] |
B. Feng, J. Xie, G.S. Cao, T.J. Zhu, X.B. Zhao, J. Mater. Chem. A 1(2013) 13111-13119.
DOI URL |
[46] |
J.H. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M.M. Zou, K. Wang, Adv. Funct. Mater. 23(2013) 4317-4323.
DOI URL |
[47] |
D. Li, J.C. Li, X.Y. Qin, J. Zhang, H.X. Xin, C.J. Song, L. Wang, Energy 116(2016) 861-866.
DOI URL |
[48] |
L. Huang, J. Lu, D. Ma, C. Ma, B. Zhang, H. Wang, G. Wang, D. Gregory, X. Zhou, G. Han, J. Mater. Chem. A 8(2020) 1394-1402.
DOI URL |
[49] | Y.B. Luo, S.T. Cai, X. Hua, H.J. Chen, Q.H. Liang, C.F. Du, Y. Zheng, J.H. Shen, J.W. Xu, C. Wolverton, V.P. Dravid, Q.Y. Yan, M.G. Kanatzidis, Adv. Energy Mater. 9(2019), 1803072. |
[50] | J.C. Li, D. Li, W. Xu, X.Y. Qin, Y.Y. Li, J. Zhang, Appl. Phys. Lett. 109(2016), 173902. |
[51] |
N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, A. Dhar, J. Alloys Compd. 668(2016) 152-158.
DOI URL |
[52] |
J.L. Gao, G.Y. Xu, Intermetallics 89(2017) 40-45.
DOI URL |
[53] |
X.L. Shi, K. Zheng, M. Hong, W.D. Liu, R. Moshwan, Y. Wang, X.L. Qu, Z.G. Chen, J. Zou, Chem. Sci. 9(2018) 7376-7389.
DOI URL |
[54] | S. Gowthamaraju, P.A. Bhobe, A.K. Nigam, Appl. Phys. Lett. 113(2018), 243904. |
[55] |
J.R. Li, J.T. Xu, H.X. Wang, G.Q. Liu, X.J. Tan, H.Z. Shao, H.Y. Hu, J. Jiang, J. Mater. Sci. Mater. Electron. 29(2018) 18727-18732.
DOI URL |
[56] |
Y.R. Gong, C. Chang, W. Wei, J. Liu, W.J. Xiong, S. Chai, D. Li, J. Zhang, G.D. Tang, Scr. Mater. 147(2018) 74-78.
DOI URL |
[57] | Y. Zheng, X.L. Shi, H. Yuan, S. Lu, X. Qu, W.D. Liu, L. Wang, K. Zheng, J. Zou, Z.G. Chen, Mater. Today Phys. 13(2020), 100198. |
[58] |
G. Han, S.R. Popuri, H.F. Greer, J.W.G. Bos, W.Z. Zhou, A.R. Knox, A. Montecucco, J. Siviter, E.A. Man, M. Macauley, D.J. Paul, W.G. Li, M.C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T.K. Mallick, D.H. Gregory, Angew. Chem. Int. Ed. 55(2016) 6433-6437.
DOI URL |
[59] | G. Han, S.R. Popuri, H.F. Greer, L.F. Llin, J.W.G. Bos, W.Z. Zhou, D.J. Paul, H. Ménard, A.R. Knox, A. Montecucco, J. Siviter, E.A. Man, W.-g. Li, M.C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, T.K. Mallick, D.H. Gregory, Adv. Energy Mater. 7(2017), 1602328. |
[60] |
S. Chandra, K. Biswas, J. Am. Chem. Soc. 141(2019) 6141-6145.
DOI URL |
[61] | X.L. Shi, X.Y. Tao, J. Zou, Z.G. Chen, Adv. Sci. 7(2020), 1902923. |
[62] | Y.W. Li, F. Li, J.F. Dong, Z.H. Ge, F.Y. Kang, J.Q. He, H.D. Du, B. Li, J.F. Li, J. Mater.Chem. C 4(2016) 2047-2055. |
[63] |
M.Y. Li, Y. Liu, Y. Zhang, Y. Zuo, J.S. Li, K.H. Lim, D. Cadavid, K.M. Ng, A. Cabot, Dalton Trans. 48(2019) 3641-3647.
DOI URL |
[64] | D. Bao, J. Chen, Y. Yu, W. Liu, L. Huang, G. Han, J. Tang, D. Zhou, L. Yang, Z.G. Chen, Chem. Eng. J. 388(2020), 124295. |
[65] |
X.-L. Shi, W.-Y. Chen, X. Tao, J. Zou, Z.G. Chen, Mater. Horiz. 7(2020) 3065-3096.
DOI URL |
[66] |
X. Liu, B. Zhang, Y. Chen, H. Wu, H. Wang, M. Yang, G. Wang, J. Xu, X. Zhou, G. Han, ACS Appl. Mater. Interfaces 12(2020) 44805-44814.
DOI URL |
[67] | X.L. Shi, A. Wu, T.L. Feng, K. Zheng, W.D. Liu, Q. Sun, M. Hong, S.T. Pantelides, Z.G. Chen, J. Zou, Adv. Energy Mater. 9(2019), 1803242. |
[68] |
L.S. Huang, G. Han, B. Zhang, D.H. Gregory, J. Mater. Chem. C 7(2019) 7572-7579.
DOI |
[69] | M.T. Agne, P.W. Voorhees, G.J. Snyder, Adv. Mater. 31(2019), 1902980. |
[70] |
X. Wang, J.T. Xu, G.Q. Liu, X.J. Tan, D.B. Li, H.Z. Shao, T.Y. Tan, J. Jiang, NPG Asia Mater. 9(2017) e426.
DOI URL |
[1] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[2] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[3] | Lin Tang, Junliang Zhang, Yusheng Tang, Jie Kong, Tianxi Liu, Junwei Gu. Polymer matrix wave-transparent composites: A review [J]. J. Mater. Sci. Technol., 2021, 75(0): 225-251. |
[4] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[5] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[6] | Yijie Hu, Hao Zhuo, Zehong Chen, Xinwen Peng, Linxin Zhong, Runcang Sun. Metal coordination assists fabrication of multifunctional aerogel [J]. J. Mater. Sci. Technol., 2021, 71(0): 67-74. |
[7] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[8] | Sining Wang, Lizhong Su, Yuting Qiu, Yu Xiao, Li-Dong Zhao. Enhanced thermoelectric performance in Cl-doped BiSbSe3 with optimal carrier concentration and effective mass [J]. J. Mater. Sci. Technol., 2021, 70(0): 67-72. |
[9] | Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 221-23. |
[10] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[11] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[12] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[13] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[14] | Zejiang Yu, Wei Zheng, Zhiqiang Li, Yunzhuo Lu, Xinbing Yun, Zuoxiang Qin, Xing Lu. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 78(0): 68-73. |
[15] | Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi [J]. J. Mater. Sci. Technol., 2020, 42(0): 122-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||