J. Mater. Sci. Technol. ›› 2021, Vol. 91: 251-261.DOI: 10.1016/j.jmst.2021.02.052
• Research Article • Previous Articles Next Articles
Z.Y. Zhaoa, R.G. Guanb,*(), Y.F. Shenc,*(
), P.K. Baia
Received:
2021-01-05
Revised:
2021-02-08
Accepted:
2021-02-15
Published:
2021-11-20
Online:
2021-11-20
Contact:
R.G. Guan,Y.F. Shen
About author:
shenyf@smm.neu.edu.cn(Y.F. Shen).Z.Y. Zhao, R.G. Guan, Y.F. Shen, P.K. Bai. Grain refinement mechanism of Mg-3Sn-1Mn-1La alloy during accumulative hot rolling[J]. J. Mater. Sci. Technol., 2021, 91: 251-261.
Fig. 1. Optical images of the Mg-3Sn-1Mn and Mg-3Sn-1Mn-1La alloys with different AHR reductions: (a-c) Mg-3Sn-1Mn alloy after rolling with a reduction of 0, 71%, and 93%, for comparison; (a1-c1) morphologies of Mg-3Sn-1Mn-1La alloy after the identical reductions.
Fig. 2. SEM images of the Mg-3Sn-1Mn (a-d) and Mg-3Sn-1Mn-1La (a1-d1) alloys after different AHR passes with a rolling reduction of 0, 43%, 71%, and 93%, respectively, EDS of position A and B showing the Mg2Sn (e) and MgSnLa (e1).
Fig. 3. TEM images of the Mg-3Sn-1Mn (a-d), and Mg-3Sn-1Mn-1La (a1-d1) alloys during the AHR passes with a thickness reduction of 0, 43%, 71%, and 93%, respectively, EDS of position C and D showing the Mg2Sn (e) and MgSnLa (e1).
Fig. 4. EBSD inverse pole figures (IPFs) (a, b) and grain boundary maps (a1, b1) of the as-prepared Mg-3Sn-1Mn and Mg-3Sn-1Mn-1La alloys. HAGBs and LAGBs are indicated by black and green in the grain boundary maps.
Fig. 5. EBSD IPFs of the Mg-3Sn-1Mn (a, b, c) and Mg-3Sn-1Mn-1La (a1, b1, c1) alloys after hot rolling with various thickness reductions of 14%, 43%, and 93%, respectively.
Fig. 6. Grain boundary maps (HAGBs in black and LAGBs in green) of the Mg-3Sn-1Mn (a, b, c) and Mg-3Sn-1Mn-1La (a1, b1, c1) alloys after hot rolling with various thickness reductions of 14%, 43%, and 93%, respectively.
Fig. 8. KAM maps and distributions of the Mg-3Sn-1Mn (a, a1) and Mg-3Sn-1Mn-1La (b, b1) alloys after AHR with a thickness reduction of 14%, and the corresponding results for the specimens with a thickness reduction of 93% are shown in (c, c1) and (d, d1) for two alloys.
Alloy | GND density | |
---|---|---|
ɛ = 14% | ɛ = 93% | |
Mg-3Sn-1Mn | 1.7b × 1014 | 9.7b × 1013 |
Mg-3Sn-1Mn-1La | 2.4b × 1014 | 5.8b × 1013 |
Table 1 GND density in the Mg-3Sn-1Mn and Mg-3Sn-1Mn-1La alloys after the AHR processing with different thickness reduction (ɛ).
Alloy | GND density | |
---|---|---|
ɛ = 14% | ɛ = 93% | |
Mg-3Sn-1Mn | 1.7b × 1014 | 9.7b × 1013 |
Mg-3Sn-1Mn-1La | 2.4b × 1014 | 5.8b × 1013 |
Fig. 9. TEM images of the MgSnLa compounds pin the (sub) grain boundary (thickness reduction of 93%) (a), and deformation twins (thickness reduction of 43%) (b) as well as lattice distortion (c) after the AHR processing Mg-3Sn-1Mn-1La alloy (thickness reduction of 43%). (d) Schematic illustration indicates the dislocations tangles bulge toward outside of twin boundaries to form LAGBs, which subsequently transforms to HAGBs.
Fig. 10. Grain boundary maps of Mg-3Sn-1Mn (a) and Mg-3Sn-1Mn-1La (b) alloys after hot rolling with an identical thickness reduction of 14% (HAGBs in black and twin boundaries in red).
[1] | X. Yang, J. Liu, Z. Wang, X. Lin, F. Liu, W. Huang, E. Liang, Mater. Sci. Eng. A 774 (2020) 138942. |
[2] | F. Zhang, Z. Liu, M. Yang, G. Su, R. Zhao, P. Mao, F. Wang, S. Sun, Mater. Sci. Eng. A 771 (2020) 138571. |
[3] | H. Tang, F. Wang, D. Li, X. Gu, Y. Fan, Mater. Lett. 264(2020) 127285. |
[4] | Z. Zhao, P. Bai, W. Du, B. Liu, D. Pan, R. Das, C. Liu, Z. Guo, Carbon N Y 170 (2020) 302-326. |
[5] | A. Zhang, R. Kang, L. Wu, H. Pan, H. Xie, Q. Huang, Y. Liu, Z. Ai, L. Ma, Y. Ren, G. Qin, Mater. Sci. Eng. A 754 (2019) 269-274. |
[6] | C. Zhao, X. Chen, F. Pan, S. Gao, D. Zhao, X. Liu, Mater. Sci. Eng. A 713 (2018) 244-252. |
[7] | Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, S.W. Xu, Mater. Des. 85(2015) 549-557. |
[8] | J.B. Zhang, L.B. Tong, C. Xu, Z.H. Jiang, L.R. Cheng, S. Kamado, H.J. Zhang, Mater. Sci. Eng. A 708 (2017) 11-20. |
[9] | H. Zengin, Y. Turen, Mater. Chem. Phys. 214(2018) 421-430. |
[10] | Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J Alloys Compd 814 (2020) 152297. |
[11] | Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou. J. Mater. Sci. Technol. 44(2020) 171-190. |
[12] | Y. Wang, J. Fu, Y. Yang, Trans. Nonferrous Met. Soc. China 22 (2012) 1322-1328. |
[13] | X. Chen, D. Zhang, J. Xu, J. Feng, Y. Zhao, B. Jiang, F. Pan. J. Alloys Compd. 850(2021) 156711. |
[14] | X. Gu, W. Cheng, S. Cheng, Y. Liu, Z. Wang, H. Yu, Z. Cui, L. Wang, H. Wang. J. Mater. Sci. Technol. 60(2021) 77-89. |
[15] | R. Guan, Z. Zhao, H. Zhang, T. Cui, C.S. Lee, Mater. Sci. Eng. A 559 (2013) 194-200. |
[16] | F. Pan, M. Yang, Mater. Sci. Eng. A 528 (2011) 4973-4981. |
[17] | L. Hou, Z. Li, H. Zhao, Y. Pan, S. Pavlinich, X. Liu, X. Li, Y. Zheng, L. Li. J. Mater. Sci. Technol. 32(2016) 874-882. |
[18] | P. Cheng, Y. Zhao, R. Lu, H. Hou, Z. Bu, F. Yan, Mater. Sci. Eng. A 708 (2017) 482-4 91. |
[19] | H. Liao, J. Kim, J. Lv, B. Jiang, X. Chen, F. Pan. J. Alloys Compd. 831(2020) 154873. |
[20] | H. Liao, J. Kim, T. Lee, J. Song, J. Peng, B. Jiang, F. Pan. J. Magnes. Alloy. 8(2020) 1120-1127. |
[21] | X. Wei, L. Jin, C. Liu, F. Wang, S. Dong, J. Dong, Mater. Sci. Eng. A 802 (2021) 140674. |
[22] | X. Zhou, W. Xiong, G. Zeng, H. Xiao, J. Zhang, X. Lu, X. Chen, Mater. Sci. Eng. A(2020) 140596. |
[23] | B. Li, B. Teng, E. Wang, Mater. Sci. Eng. A 765 (2019) 138317. |
[24] | M.M. Castro, S. Sabbaghianrad, P.H.R. Pereira, E.M. Mazzer, A. Isaac, T.G. Lang- don, R.B. Figueiredo , J. Alloys Compd. 804(2019) 421-426. |
[25] | M.A. Salevati, F. Akbaripanah, R. Mahmudi, K.H. Fekete, A. Heczel, J. Gubicza, Mater. Sci. Eng. A 776 (2020) 139002. |
[26] | B. Omranpour, Y. Ivanisenko, R. Kulagin, L. Kommel, E.G. Sanchez, D. Nug- manov, T. Scherer, A. Heczel, J. Gubicza, Mater. Sci. Eng. A 762 (2019) 138074. |
[27] | D. Zhao, X. Chen, X. Wang, F. Pan, Mater. Sci. Eng. A 773 (2020) 138741. |
[28] | H. Esmaeilpour, A. Zarei-Hanzaki, N. Eftekhari, H.R. Abedi, M.R. Ghandehari Ferdowsi, Mater. Sci. Eng. A 778 (2020) 139. |
[29] | X. An, Y. Tian, H. Wang, Y. Shen, Z. Wang, Adv. Eng. Mater. 21(2019) 1900132. |
[30] | J. Go, J.U. Lee, H. Yu, S.H. Park. J. Mater. Sci. Technol. 44(2020) 62-75. |
[31] | Y. Meng, J. Yu, K. Liu, H. Yu, F. Zhang, Y. Wu, Z. Zhang, N. Luo, H. Wang. J. Alloys Compd. 828(2020) 154454. |
[32] | M.M. Hoseini-Athar, R. Mahmudi, R. Prasath Babu, P. Hedström. J. Alloys Compd. 806(2019) 1200-1206. |
[33] | Q. Wu, H. Yan, J. Chen, W. Xia, M. Song, B. Su, Mater. Charact. 160(2020) 110131. |
[34] | C.Q. Liu, H.W. Chen, H. Liu, X.J. Zhao, J.F. Nie, Acta Mater 144 (2018) 590-600. |
[35] | R.G. Guan, Y.F. Shen, Z.Y. Zhao, R.D.K. Misra , Sci.Rep. 6(2016) 23154. |
[36] | Z. Zhao, P. Bai, R. Guan, V. Murugadoss, H. Liu, X. Wang, Z. Guo, Mater. Sci. Eng. A 734 (2018) 200-209. |
[37] | Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li. J. Magnes. Alloy. 7(2019) 58-71. |
[38] | Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193(2021) 127-131. |
[39] | Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater 187 (2020) 51-65. |
[40] | J. Xu, Y. Li, B. Hu, Y. Jiang, Q. Li. J. Mater. Sci. 54(2019) 14561-14576. |
[41] | Y. Pang, D. Sun, Q. Gu, K.-.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16(2016) 2404-2415. |
[42] | L.S. Toth, C.F. Gu, B. Beausir, J.J. Fundenberger, M. Hoffman, Acta Mater. 117(2016) 35-42. |
[43] | J.H. Lee, J.U. Lee, S.-.H. Kim, S.W. Song, C.S. Lee, S.H. Park, J. Mater. Sci. Technol. 34(2018) 1747-1755. |
[44] | L.Y. Zhao, H. Yan, R.S. Chen, E.-.H. Han, J.Mater. Sci. Technol. 60(2021) 162-167. |
[45] | L.P. Kubin, A. Mortensen, Scr. Mater. 48(2003) 119-125. |
[46] | Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Mater. Sci. Eng. A 723 (2018) 212-220. |
[47] | H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47 (1999) 1239-1263. |
[48] | Y.F. Shen, N. Jia, R.D.K. Misra, L. Zuo, Acta Mater 103 (2016) 229-242. |
[49] | Y.F. Shen, Y.D. Wang, X.P. Liu, X. Sun, R.L. Peng, S.Y. Zhang, L. Zuo, P.K. Liaw, Acta Mater. 61(2013) 6093-6106. |
[50] | M.J. Wang, C.Y. Sun, M.W. Fu, Z.L. Liu, L.Y. Qian. J. Alloys Compd. 820(2020) 153325. |
[1] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
[2] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[3] | Shiyang Liu, Damon Kent, Hongyi Zhan, Nghiem Doan, Chang Wang, Sen Yu, Matthew Dargusch, Gui Wang. Influence of strain rate and crystallographic orientation on dynamic recrystallization of pure Zn during room-temperature compression [J]. J. Mater. Sci. Technol., 2021, 86(0): 237-250. |
[4] | Yanying Hu, Huijie Liu, Dongrui Li. Contribution of ultrasonic to microstructure and mechanical properties of tilt probe penetrating friction stir welded joint [J]. J. Mater. Sci. Technol., 2021, 85(0): 205-217. |
[5] | Abdul Malik, Yangwei Wang, Huanwu Cheng, Faisal Nazeer, Muhammad Abubaker Khan. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile [J]. J. Mater. Sci. Technol., 2021, 79(0): 46-61. |
[6] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[7] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[8] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[9] | Shan Cecilia Cao, Xiaochun Zhang, Yuan Yuan, Pengyau Wang, Lei Zhang, Na Liu, Yi Liu, Jian Lu. A constitutive model incorporating grain refinement strengthening on metallic alloys [J]. J. Mater. Sci. Technol., 2021, 88(0): 233-239. |
[10] | Min Zha, Hong-Min Zhang, Xiang-Tao Meng, Hai-Long Jia, Shen-Bao Jin, Gang Sha, Hui-Yuan Wang, Yan-Jun Li, Hans J. Roven. Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation [J]. J. Mater. Sci. Technol., 2021, 89(0): 141-149. |
[11] | Weigui Zhang, Kun Li, Runqiang Chi, Susheng Tan, Peijie Li. Insights into microstructural evolution and deformation behaviors of a gradient textured AZ31B Mg alloy plate under hypervelocity impact [J]. J. Mater. Sci. Technol., 2021, 91(0): 40-57. |
[12] | Xuefei Huang, Baoqin Fu, Weigang Huang. Newly observed irrational crystallographic features of non-basal Mg2Sn precipitates in a Mg-4Sn alloy aged at 160 °C [J]. J. Mater. Sci. Technol., 2021, 77(0): 237-243. |
[13] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[14] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
[15] | Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 81(0): 212-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||