J. Mater. Sci. Technol. ›› 2021, Vol. 88: 233-239.DOI: 10.1016/j.jmst.2021.02.004
Previous Articles Next Articles
Shan Cecilia Caoa,c,*(
), Xiaochun Zhangb,*(
), Yuan Yuand, Pengyau Wange, Lei Zhangb, Na Liuf, Yi Liua, Jian Luc,g,h,*(
)
Received:2020-07-04
Revised:2020-10-08
Accepted:2020-11-16
Published:2021-02-10
Online:2021-02-10
Contact:
Shan Cecilia Cao,Xiaochun Zhang,Jian Lu
About author:jianlu@cityu.edu.hk (J. Lu).Shan Cecilia Cao, Xiaochun Zhang, Yuan Yuan, Pengyau Wang, Lei Zhang, Na Liu, Yi Liu, Jian Lu. A constitutive model incorporating grain refinement strengthening on metallic alloys[J]. J. Mater. Sci. Technol., 2021, 88: 233-239.
Fig. 1. A new constitutive model including micro-level internal variables. (a) is the schematic illustration of secondary development of JC model; (b) shows flow chart of VUMAT subroutine; (c) gives schematic of random grain structure modeled by Voronoi diagram; (d) and (e) are illustration of Coupling poly-crystal structure; (f) and (g) are diagrams of Coupling Poly-crystal structure by Cellular Automaton Method.
| Parameter (unit) | Symbol | Magnitude |
|---|---|---|
| Elastic modulus (GPa) | E | 193 |
| Poisson's ratio | υ | 0.3 |
| Strain hardening coefficient (MPa) | B | 1161 |
| Strain hardening exponent | N | 0.61 |
| Strain rate hardening coefficient | C | 0.01 |
| Initial yield stress (MPa) | σ0 | 284.17 |
| Grain refinement hardening coefficent (MPa μm1/2) | k | 93.17 |
| Limitation of grain size (nm) | d∞ | 2 |
| Initial grain size (μm) | d0 | 20 |
| Grain refinement constant | εc | 9.77 |
Table 1 Descriptions, symbols and magnitudes of material parameters for applied samples.
| Parameter (unit) | Symbol | Magnitude |
|---|---|---|
| Elastic modulus (GPa) | E | 193 |
| Poisson's ratio | υ | 0.3 |
| Strain hardening coefficient (MPa) | B | 1161 |
| Strain hardening exponent | N | 0.61 |
| Strain rate hardening coefficient | C | 0.01 |
| Initial yield stress (MPa) | σ0 | 284.17 |
| Grain refinement hardening coefficent (MPa μm1/2) | k | 93.17 |
| Limitation of grain size (nm) | d∞ | 2 |
| Initial grain size (μm) | d0 | 20 |
| Grain refinement constant | εc | 9.77 |
Fig. 2. The influence of the new parameters associated with the grain size evolution. (a) gives stress - strain curves at different (εc), compared to the Johnson-Cook model. (b) shows grain size distributions with different (εc). (a) and (b) illustrate the effect of the εc on the stress-strain curve and the grain size evolution, respectively (c) presents the stress - strain curves and (d) grain size distributions with different (d0); (c) and (d) reveal the effects of the initial grain size d0 on the stress strain curve and grain size evolution (e) is the stress - strain curves and (f) is grain size distributions with different (d∞). These results reveal that the parameters d∞ and εc have a significant impact on the yielding characteristics of austenite steels as both the stress strain curve and grain size evolution being affected.
Fig. 3. Time evolution of impact velocity and equivalent plastic strain rate. (a) and (b) are predicted grain size distributions after 64 times of random impacts which show the grain size distribution in the interior of SMAT treated sample. It is shown that the SMAT process has induced the gradient gran size distribution from tens of nanometers (in the top surface layer) to several micrometers (in the sub-surface layer) and the uniformity of grain size in the same layer through the large amount of cyclic random impacts. (c) is the monitor of strain rate and velocity during one impact; (d) is the full coverage multiple random impingements model. It is demonstrated that the strain rate predicted by the constitutive model reaches 105 for a 3-mm ball at 10 m/s velocity. Such result agrees with the experiment observation and the theory analysis.
Fig. 4. The predicted spatial variations of grain size distribution during SMAT process. (a, d, g) are the schematic illustrations of local indents produced by random impacts. (b, c, e, f, h and i) clearly reveal the contours of grain size distributions on the impact surface and in the interior. (a, b, c) are the predicted simulated distributions of grain size after five random impacts; (d, e and f) are the assumed distributions of grain size after eight random impacts; (g, h, i) are the predicted distributions of grain size after twelve random impacts. The minimum grain sizes are reduced to 75.94, 51.16 and 43.46 nm after five random impacts, eight random impacts and twelve random impacts, respectively.
Fig. 5. Residual stress and yield stress distributions as a function of position. The residual stress and yield flow stress distributions along depth are calculated. The maximum of compressive residual stress reaches ~900 MPa while the yield stress touches ~1200 MPa. The simulated grain size distributions proved that grain refinement near the top surface contributes largely to the high strength.
| [1] | N.R. Tao, Nairong, W.P. Tong, Z.B. Wang, W. Wang, M.L. Sui, J. Lu, K. Lu, J. Mater. Sci. Technol. 19 (2003) 563-566. |
| [2] |
S.C. Cao, L.L. Zhu, J.B. Liu, G. Wu, W.X. Huang, J. Lu, Scripta Mater. 154 (2018) 230-235.
DOI URL |
| [3] |
Y. Liu, B. Jin, J. Lu, Mater. Sci. Eng. A 636 (2015) 446-451.
DOI URL |
| [4] |
K.K. Chang, M.T. Baben, D. Music, D. Lange, H. Bolvardi, J.M. Schneider, Acta Mater. 98 (2015) 135-140.
DOI URL |
| [5] |
F.J. Zerilli, R.W. Armstrong, J. Appl. Phys. 61 (1987) 1816-1825.
DOI URL |
| [6] | F.J. Zerilli, R.W. Armstrong, United States, 1995, pp. 315-318. |
| [7] | F.J. Zerilli, R.W. Armstrong, J. Phys. IV 7 (1997) 637-642. |
| [8] |
P.S. Follansbee, U.F. Kocks, Acta Metall. 36 (1988) 81-93.
DOI URL |
| [9] |
D.J. Steinberg, S.G. Cochran, M.W. Guinan, J. Appl. Phys. 51 (1980) 1498-1504.
DOI URL |
| [10] | D.J. Steinberg, C.M. Lund, J. Phys. IV 49 (1988) 433-440. |
| [11] |
D.L. Preston, D.L. Tonks, D.C. Wallace, J. App. Phys. 93 (2003) 211-220.
DOI URL |
| [12] | G.R. Johnson, W.H. Cook, Netherlands, 1983, pp. 541-547. |
| [13] |
X. Chen, Z. Han, X.Y. Li, K. Lu, Sci. Adv. 2 (2016), e1601942.
DOI URL |
| [14] |
B.P. Kashyap, K. Tangri, Acta Metall. Mater. 43 (1995) 3971-3981.
DOI URL |
| [15] | X.C. Zhang, S.C. Cao, L.D. Mao, Y.L. Wang, F.S. Cheng, A.J. Qu, Y.T. Zhang, H. Yang, L. Zhu, Y. Wang, J. Lu, Mater. Today Commun. 24 (2020), 100419. |
| [16] |
J.S.C. Jang, C.C. Koch, Scr. Metall. Mater. 24 (1990) 1599-1604.
DOI URL |
| [17] |
A.S. Khan, H.Y. Zhang, L. Takacs, Int. J. Plast. 16 (2000) 1459-1476.
DOI URL |
| [18] |
R.Q. Liang, A.S. Khan, Int. J. Plast. 15 (1999) 963-980.
DOI URL |
| [19] |
B. Farrokh, A.S. Khan, Int. J. Plast. 25 (2009) 715-732.
DOI URL |
| [20] | ABAQUS, Version 6.13, 6, Dassault Systèmes Simulia Corp., Providence, RI, 2013, pp. 2013. |
| [21] |
Cao, Zhang, Lu, NPJ Comput. Mater. 5 (2019) 1-15.
DOI URL |
| [22] | H.D. Hibbitt, B.I. Harlsson, E.P. Sorensen, User Manual and Example Manual, 2007. |
| [23] |
M.N.A. Nasr, E.G. Ng, M.A. Elbestawi, J. Eng. Mater. Technol. 129 (2007) 567-579.
DOI URL |
| [24] | S.C. Cao, J.B. Liu, L.L. Zhu, L. Li, M. Dao, J. Lu, R.O. Ritchie, Sci. Rep. 8 (2018) 1-7. |
| [25] |
X.H. Chen, J. Lu, L. Lu, K. Lu, Scr. Mater. 52 (2005) 1039-1044.
DOI URL |
| [1] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
| [2] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
| [3] | Shahzad Fateh Ali, Jitang Fan. Elastic-viscoplastic constitutive model for capturing the mechanical response of polymer composite at various strain rates [J]. J. Mater. Sci. Technol., 2020, 57(0): 12-17. |
| [4] | Zhou Zhaohui, Fan Qichao, Xia Zhihui, Hao Aiguo, Yang Wenhua, Ji Wei, Cao Haiqiao. Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy [J]. J. Mater. Sci. Technol., 2017, 33(7): 637-644. |
| [5] | Liu Xiaowei,Liu Yong,Jin Bin,Lu Yang,Lu Jian. Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing [J]. J. Mater. Sci. Technol., 2017, 33(3): 224-230. |
| [6] | S. Guo, Z.B. Wang, K. Lu. An Aluminide Surface Layer Containing Lower-Al on Ferritic-Martensitic Steel Formed by Lower-Temperature Aluminization [J]. J. Mater. Sci. Technol., 2015, 31(12): 1268-1273. |
| [7] | Limin Wang, Zhenbo Wang, Sheng Guo, Ke Lu. Annealing-induced Grain Refinement in a Nanostructured Ferritic Steel [J]. J Mater Sci Technol, 2012, 28(1): 41-45. |
| [8] | Shoudan Lu Zhenbo Wang Ke Lu. Strain-induced Microstructure Refinement in a Tool Steel Subjected to Surface Mechanical Attrition Treatment [J]. J Mater Sci Technol, 2010, 26(3): 258-263. |
| [9] | Yu Wang,Min Huang,Lei Zhou,Zhixin Cong,Huilin Gao. Improved Fatigue Behavior of Pipeline Steel Welded Joint by Surface Mechanical Attrition Treatment (SMAT) [J]. J Mater Sci Technol, 2009, 25(04): 513-515. |
| [10] | Lingyun XU, Xiaochun WU, Hongbin WANG. Influence of Surface Nano-structured Treatment on Pack Boriding of H13 Steel [J]. J Mater Sci Technol, 2007, 23(04): 525-528. |
| [11] | Jinyu GUO, Ke WANG, Lei LU. Tensile properties of Cu with deformation twins induced by SMAT [J]. J Mater Sci Technol, 2006, 22(06): 789-792. |
| [12] | Ming CHENG, John A.Wert. Modeling of Microimprinting of Bulk Metallic Glasses [J]. J Mater Sci Technol, 2006, 22(06): 851-854. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
