J. Mater. Sci. Technol. ›› 2021, Vol. 88: 240-249.DOI: 10.1016/j.jmst.2021.01.074
Previous Articles Next Articles
Yang Xuea, Jun Chenb,c, Lan Zhanga,*(), Yong Hana,*(
)
Received:
2020-12-13
Revised:
2021-01-13
Accepted:
2021-01-22
Published:
2021-03-19
Online:
2021-03-19
Contact:
Lan Zhang,Yong Han
About author:
yonghan@mail.xjtu.edu.cn (Y. Han).Yang Xue, Jun Chen, Lan Zhang, Yong Han. BSA-lysozyme coated NaCa2HSi3O9 nanorods on titanium for cytocompatibility and antibacterial activity[J]. J. Mater. Sci. Technol., 2021, 88: 240-249.
Fig. 1. Schematic illustration of the preparation of protein-coated NCS nanorods. NCS nanorods degrade rapidly and can't support the cell well in medium with a high pH value. The protein layer consisting of BSA and LYS is expected to decrease the NCS degradation rate, reduce the pH increase and endow Ti implants with improved osteoblast/endothelial cell response and anti-bacterial activity against S. aureus and E. coli simultaneously in vitro.
Name | Spinning coating | ||
---|---|---|---|
BSA (50 mg/mL) | LYS (25 mg/mL) | LYS (50 mg/mL) | |
NCS-B5 | √ | ||
NCS-B5L2.5 | √ | √ | |
NCS-B5L5 | √ | √ | |
NCS-L5 | √ |
Table 1 Treatment process for fabricating different surfaces.
Name | Spinning coating | ||
---|---|---|---|
BSA (50 mg/mL) | LYS (25 mg/mL) | LYS (50 mg/mL) | |
NCS-B5 | √ | ||
NCS-B5L2.5 | √ | √ | |
NCS-B5L5 | √ | √ | |
NCS-L5 | √ |
Fig. 2. Surface morphologies of different samples: (a) NCS, (b) NCS-B5, (c)NCS-B5L2.5, (d)NCS-B5L5, (e)NCS-L5; (f) XRD patterns of di? ;erent samples.
Fig. 3. (a) Full XPS spectra of different coatings; (b) elemental compositions detected on different coatings by XPS; high-resolution spectra of C 1s (c) and N 1s (d) for different surfaces.
Fig. 4. (a) Contact angles and corresponding digital photographs of water droplets on different surfaces; (b) Ca and (c) Si releasing kinetics for different samples after different immersion time; (d) pH values of PS solutions with different samples after immersion for di? ;erent time; (e) surface morphologies of different surfaces after immersion in PS for 28 days, and arrows show the nanorods after serious degradation.
Fig. 5. Antibacterial ratios of S. aureus (a) and E. coil (b) on different surfaces; Live/dead staining and SEM images of S. aureus (c) and E. coil (d) cultured on different surfaces after 24 h of incubation.
Fig. 6. (a) Alamar Blue assays of cells viability after 1, 3 and 5 days incubation; (b) fluorescence images of Live/dead staining after culturing for 1 and 3 days; (c) SEM images of osteoblast cultured on different samples for 1 day; (d) gene expressions of MC3T3-E1 cultured on different samples after 5 days; (e) collagen secretion of MC3T3-E1 incubated on different samples for 5 days; (f) ECM mineralization of MC3T3-E1 incubated on different samples for 10 days. (*) p < 0.05 and (**)p < 0.01 compared with the Ti, (#) p < 0.05 and (##) p < 0.01 compared with NCS.
Fig. 7. (a) MTT assays of HUVECs cultured in 100 % coating extract for 1, 3 and 7 days, (*) p < 0.05 and (**) p < 0.01 compared with ECM; (b) fluorescence images of live/dead staining after culturing 3 days; (c) microscopy images of tube formation in vitro; quantification analysis of (d) junction and (e) master segment length, (*) p < 0.05 and (**) p<0.01 compared with ECM.
[1] |
X.R. Ke, C. Zhuang, X.Y. Yang, J. Fu, S.Z. Xu, L.J. Xie, Z.R. Gou, J.C. Wang, L. Zhang, G.J. Yang, ACS Appl. Mater. Interfaces 9 (2017) 24497-24510.
DOI URL |
[2] | S.N. Nayab, F.H. Jones, I. Olsen, , J. Biomed. Mater. Res., Part A 83 (2007) 296-302. |
[3] |
L. Cao, I. Ullah, N. Li, S.Y. Niu, R.J. Sun, D.D. Xia, R. Yang, X. Zhang, J. Mater. Sci. Technol. 35 (2019) 719-726.
DOI |
[4] |
K. Li, Y. Xue, J.H. Zhou, J. Han, L. Zhang, Y. Han, J. Mater. Chem. B 8 (2020) 691-702.
DOI URL |
[5] |
L. Zhang, X.Y. Huang, Y. Han, J. Mater. Chem. B 4 (2016) 6734-6745.
DOI PMID |
[6] | Q.M. Wang, H.J. Hu, Y.Q. Qiao, Z.X. Zhang, J.Y. Sun, J. Mater. Sci. Technol. 28 (2012) 109-117. |
[7] |
K. Li, F. Dai, T. Yan, Y. Xue, L. Zhang, Y. Han, ACS Biomater. Sci. Eng. 5 (2019) 2208-2221.
DOI URL |
[8] |
U. Saran, S.G. Piperni, S. Chatterjee, Arch. Biochem. Biophys. 561 (2014) 109-117.
DOI URL |
[9] |
K. Li, X. Lu, I. Razanau, X.D. Wu, T. Hu, S.W. Liu, Y.T. Xie, L.P. Huang, X.B. Zheng, Mater. Sci. Eng. C 101 (2019) 513-520.
DOI URL |
[10] |
J.Y. Sun, L. Wei, X.Y. Liu, J.Y. Li, B.E. Li, G.C. Wang, F.H. Meng, Acta Biomater. 5 (2009) 1284-1293.
DOI URL |
[11] |
P. Li, C.L. Xie, J. Liu, Z. Wang, X.F. Xiao, Surf. Coat. Technol. 258 (2014) 624-630.
DOI URL |
[12] |
K. Li, D.D. Hu, Y.T. Xie, L.P. Huang, X.B. Zheng, Nanotechnology 29 (2018), 084001.
DOI URL |
[13] |
S. Kalaivani, R.K. Singh, V. Ganesan, S. Kannan, J. Mater. Chem. B 2 (2014) 846-858.
DOI PMID |
[14] |
K. Xiong, T.T. Wu, Q.B. Fan, L. Chen, M.H. Yan, ACS Appl. Mater. Interfaces 9 (2017) 44356-44368.
DOI URL |
[15] |
C.K. Chiu, D.J. Lee, H. Chen, L.C. Chow, C.C. Ko, J. Mater. Sci. Mater. Med. 26 (2015) 92.
DOI URL |
[16] |
L. Zhang, S. Gopalakrishnan, K. Li, L.S. Wang, Y. Han, V.M. Rotello, ACS Appl. Mater. Interfaces 12 (2020) 6590-6597.
DOI URL |
[17] | M. Morra, C. Cassinelli, G. Cascardo, D. Bollati, R. Rodriguez y Baena, J. Biomed. Mater. Res., Part A 94 (2010) 271-279. |
[18] |
L.S. Wang, S. Gopalakrishnan, Y.W. Lee, J.X. Zhu, S.S. Nonnenmann, V.M. Rotello, Mater. Horiz. 5 (2018) 268-274.
DOI URL |
[19] |
J. Li, X.M. Liu, Z. Zhou, L. Tan, X.B. Wang, Y.F. Zheng, Y. Han, D.F. Chen, K.W.K. Yeung, Z.D. Cui, X.J. Yang, Y.Q. Liang, Z.Y. Li, S.L. Zhu, S.L. Wu, ACS Nano 13 (2019) 11153-11167.
DOI URL |
[20] |
Y.A. Wang, S.Y. Li, M.F. Jin, Q. Han, S.S. Liu, X.H. Chen, Y.T. Han, Int. J. Mol. Sci. 21 (2020) 1635.
DOI URL |
[21] |
S. Katsura, T. Furuishi, H. Ueda, E. Yonemochi, Molecules 25 (2020) 3704.
DOI URL |
[22] |
D.J. Zhou, T. Yang, M. Xing, G.X. Luo, RSC Adv. 8 (2018) 13493-13502.
DOI URL |
[23] |
Z.M. Wang, K.F. Wang, X. Lu, C. Li, L. Han, C.M. Xie, Y.L. Liu, S.X. Qu, G. Zhen, Adv. Healthcare Mater. 4 (2015) 927-937.
DOI URL |
[24] | A.J. Ryan, C.J. Kearney, N. Shen, U. Khan, A.G. Kelly, C. Probst, E. Brauchle, S. Biccai, C.D. Garciarena, V. Vega-Mayoral, P. Loskill, S.W. Kerrigan, D.J. Kelly, K. Schenke-Layland, J.N. Coleman, F.J. O’Brien, Adv.Mater. 30 (2018), 1706442. |
[25] |
K. Li, S.Y. Liu, Y. Xue, L. Zhang, Y. Han, J. Mater. Chem. B 7 (2019) 5265-5276.
DOI URL |
[26] |
L. O’Neill, P. Dobbyn, M. Kulkarni, A. Pandit, Clin. Plasma Med. 12 (2018) 23-32.
DOI URL |
[27] |
T.T. Qiang, L. Chen, Z. Yan, X.H. Liu, J. Agric. Food Chem. 67 (2019) 1504-1512.
DOI URL |
[28] |
M. de Sousa, C.H.Z. Martins, L.S. Franqui, L.C. Fonseca, F.S. Delite, E.M. Lanzoni, D.S.T. Martinez, O.L. Alves, J. Mater. Chem. B 6 (2018) 2803-2812.
DOI URL |
[29] |
T. Groth, G. Altankov, Biomaterials 17 (1996) 1227-1234.
PMID |
[30] |
Y.N. Zhang, Y. Han, L. Zhang, J. Mater. Sci. Technol. 32 (2016) 930-936.
DOI |
[31] | J.K. Zhang, W.H. Zhou, H. Wang, K.L. Lin, F.S. Chen, J. Mater. Sci. Technol. 35 (2019) 336-343. |
[32] |
J. Li, L. Tan, X.M. Liu, Z.D. Cui, X.J. Yang, K.W.K. Yeung, P.K. Chu, S.L. Wu, ACS Nano 11 (2017) 11250-11263.
DOI URL |
[33] |
A. Khandan, M. Abdellahi, N. Ozada, H. Ghayour, J. Taiwan Inst. Chem. Eng. 60 (2016) 538-546.
DOI URL |
[34] |
X. Li, H. Tu, M.T. Huang, J.J. Chen, X.W. Shi, H.B. Deng, S.F. Wang, Y.M. Du, Int. J. Biol. Macromol. 102 (2017) 789-795.
DOI URL |
[35] |
K. Kubiak-Ossowska, K. Tokarczyk, B. Jachimska, P.A. Mulheran, J. Phys. Chem. B 121 (2017) 3975-3986.
DOI URL |
[36] |
M. Lepoitevin, M. Jaber, R. Guegan, J.M. Janot, P. Dejardin, F. Henn, S. Balme, Appl. Clay Sci. 95 (2014) 396-402.
DOI URL |
[37] |
S. Agarwal, M. Riffault, D. Hoey, B. Duffy, J. Curtin, S. Jaiswal, ACS Biomater. Sci. Eng. 3 (2017) 3244-3253.
DOI URL |
[38] |
Y.H. Shen, W.C. Liu, C.Y. Wen, H.B. Pan, T. Wang, B.W. Darvell, W.W. Lu, W.H. Huang, J. Mater. Chem. 22 (2012), 8662-8670.
DOI URL |
[39] |
Y. Chen, J. Wang, X.D. Zhu, Z.R. Tang, X. Yang, Y.F. Tan, Y.J. Fan, X.D. Zhang, Acta Biomater. 11 (2015) 435-448.
DOI PMID |
[40] |
N. Kong, K.L. Lin, H.Y. Li, J. Chang, J. Mater. Chem. B 2 (2014) 1100-1110.
DOI PMID |
[1] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[2] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[3] | Muhammad Ali Siddiqui, Ihsan Ullah, Hui Liu, Shuyuan Zhang, Ling Ren, Ke Yang. Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti-3Cu alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 117-127. |
[4] | Ming-Shi Song, Rong-Chang Zeng, Yun-Fei Ding, Rachel W. Li, Mark Easton, Ivan Cole, Nick Birbilis, Xiao-Bo Chen. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review [J]. J. Mater. Sci. Technol., 2019, 35(4): 535-544. |
[5] | Junxiu Chen, Jiahui Dong, Huameng Fu, Haifeng Zhang, Lili Tan, Dewei Zhao, Ke Yang. In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect [J]. J. Mater. Sci. Technol., 2019, 35(10): 2254-2262. |
[6] | Chi Xiao, Liqing Wang, Yuping Ren, Shineng Sun, Erlin Zhang, Chongnan Yan, Qi Liu, Xiaogang Sun, Fenyong Shou, Jingzhu Duan, Huang Wang, Gaowu Qin. Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies [J]. J. Mater. Sci. Technol., 2018, 34(9): 1618-1627. |
[7] | Dunhua Hong, Guangzhong Cao, Junle Qu, Yuanming Deng, Jiaonin Tang. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites [J]. J. Mater. Sci. Technol., 2018, 34(12): 2359-2367. |
[8] | Cijun Shuai, Long Liu, Mingchun Zhao, Pei Feng, Youwen Yang, Wang Guo, Chengde Gao, Fulai Yuan. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique [J]. J. Mater. Sci. Technol., 2018, 34(10): 1944-1952. |
[9] | Liu Jing,Xi Tingfei. Enhanced Anti-corrosion Ability and Biocompatibility of PLGA Coatings on MgZnYNd Alloy by BTSE-APTES Pre-treatment for Cardiovascular Stent [J]. J. Mater. Sci. Technol., 2016, 32(9): 845-857. |
[10] | Liu Jingqun,Li Jiyan,Ye Jiandong. Properties and Cytocompatibility of Anti-Washout Calcium Phosphate Cement by Introducing Locust Bean Gum [J]. J. Mater. Sci. Technol., 2016, 32(10): 1021-1026. |
[11] | Qiang Wang, Lili Tan, Ke Yang. Cytocompatibility and Hemolysis of AZ31B Magnesium Alloy with Si-containing Coating [J]. J. Mater. Sci. Technol., 2015, 31(8): 845-851. |
[12] | Zheng Ma, Ling Ren, Rui Liu, Ke Yang, Yu Zhang, Zhenhua Liao, Weiqiang Liu, Min Qi, R.D.K. Misra. Effect of Heat Treatment on Cu Distribution, Antibacterial Performance and Cytotoxicity of Ti-6Al-4V-5Cu Alloy [J]. J. Mater. Sci. Technol., 2015, 31(7): 723-732. |
[13] | S. Snega, K. Ravichandran, M. Baneto, S. Vijayakumar. Simultaneous Enhancement of Transparent and Antibacterial Properties of ZnO Films by Suitable F Doping [J]. J. Mater. Sci. Technol., 2015, 31(7): 759-765. |
[14] | Javed Iqbal, Nauman Safdar, Tariq Jan, Muhammad Ismail, S.S. Hussain, Arshad Mahmood, Shaheen Shahzad, Qaisar Mansoor. Facile Synthesis as well as Structural, Raman, Dielectric and Antibacterial Characteristics of Cu Doped ZnO Nanoparticles [J]. J. Mater. Sci. Technol., 2015, 31(3): 300-304. |
[15] | Guobo Lan, Mei Li, Ying Tan, Lihua Li, Xiaoming Yang, Limin Ma, Qingshui Yin, Hong Xia, Yu Zhang, Guoxin Tan, Chengyun Ning. Promoting Bone Mesenchymal Stem Cells and Inhibiting Bacterial Adhesion of Acid-Etched Nanostructured Titanium by Ultraviolet Functionalization [J]. J. Mater. Sci. Technol., 2015, 31(2): 182-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||