J. Mater. Sci. Technol. ›› 2021, Vol. 91: 262-269.DOI: 10.1016/j.jmst.2021.01.095
• Research Article • Previous Articles Next Articles
Shanlin Kea, Caixia Kana,b,*(), Xingzhong Zhua, Changshun Wanga, Weijian Gaoa, Zhaosheng Lic, Xiaoguang Zhud, Daning Shia,b,e,*(
)
Received:
2021-01-11
Revised:
2021-01-11
Accepted:
2021-01-11
Published:
2021-11-20
Online:
2021-11-20
Contact:
Caixia Kan,Daning Shi
About author:
shi@nuaa.edu.cn (D. Shi).Shanlin Ke, Caixia Kan, Xingzhong Zhu, Changshun Wang, Weijian Gao, Zhaosheng Li, Xiaoguang Zhu, Daning Shi. Effective fabrication of porous Au-Ag alloy nanorods for in situ Raman monitoring catalytic oxidation and reduction reactions[J]. J. Mater. Sci. Technol., 2021, 91: 262-269.
Fig. 1. (a) Extinction spectra of Au@AgNRs (A) and UT-AuAgNRs (B) and T-AuAgNRs (C). Insets show the corresponding colloidal solution colors. (b) Extinction spectra of P-AuAgNRs as a function of dealloying time. Insets indicate the color changes of P-AuAgNRs during dealloying. (c-f) Representative TEM images of P-AuAgNRs obtained after etching with Fe(NO3)3 for different times: (c) 5 min, (d) 10 min, (e) 30 min, and (f) 120 min.
Fig. 2. (a) Low-magnification HAADF-STEM image of P-AuAgNRs. (b) High-magnification HAADF-STEM image of a single P-AuAgNR, and (c-e) their corresponding elemental maps. (f, g) EDX line scans along and perpendicular to the long axis of P-AuAgNR, respectively.
Fig. 3. (a) Aberration-corrected HAADF-STEM image of P-AuAgNRs at low magnification. The diffraction pattern (inset) shows that P-AuAgNRs are single-crystalline. The marked squares denote the areas resolved by HAADF-STEM in the following observing. (b-f) Surface planes with monatomic terraces, steps, kinks, and vacancies were observed. The schematics illustration atomic-scale structural characterization of the corresponding high-index or low-index faceting are exhibited in each graph inset. (g) Schematics illustration of various catalytic sites.
Fig. 4. Extinction spectra of (a) AuAgNR and (c) Au@AgNR exposed to an aqueous etching solution, H2O2 (1.5 vol.%) and NH3·H2O (1 vol.%) in the presence of CTAC, and using 120 µL Fe(NO3)3 as the etchant for (b) AuAgNR and (d) Au@AgNR. Colloidal SERS spectra of 4-NTP on (e) Au@AgNR and (f) AuAgNR dispersed in an aqueous etching solution, H2O2 (1.5 vol.%) and NH3·H2O (1 vol.%) in the presence of CTAC for 10 min.
Fig. 5. (a) Chematic illustrating of the oxidation of TMB by H2O2 and the reduction of 4-NTP by NaBH4 using P-AuAgNRs nanocatalysts. (b, c) The SERS spectra of TMB recorded at different time intervals during the peroxidase-like catalytic reaction in the presence of H2O2 and (d) the corresponding SERS intensities at 1611 cm-1 versus reaction time. (e) Color-coded intensity map of time-dependent SERS signals obtained from 4-NTP adsorbed on the surfaces of P-AuAgNRs (etching time=30 min) at different reaction times. (f) Representative SERS signals acquired from 4-NTP functionalized on P-AuAgNRs at different reaction times. (g) Fraction of reactant (4-NTP) as a function of reaction time during the reduction catalyzed by P-AuAgNRs, and the rate constant (blue line) obtained via plotting the logarithm of the Raman intensity at 1340 cm-1 versus reaction time. The error bars denote the standard deviations accomplished from 3 measurements.
[1] | H.E. Lee, H.Y. Ahn, J. Mun, Y.Y. Lee, M. Kim, N.H. Cho, K. Chang, W.S. Kim, J. Rho, K.T. Nam, Nature 556 (2018) 360-365. |
[2] | G. Gonzalez-Rubio, P. Diaz-Nunez, A. Rivera, A. Prada, G. Tardajos, J. Gon- zalez-Izquierdo, L. Banares, P. Llombart, L.G. Macdowell, M.A. Palafox, L.M. Liz-Marzan, O. Pena-Rodriguez, A. Guerrero-Martinez, Science 358 (2017) 640-644. |
[3] | S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu, R. Panneerselvam, Z.Q. Tian, Nat. Rev. Mater. 1(2016) 16021. |
[4] | X.Z. Zhu, H.K. Yip, X.L. Zhuo, R.B. Jiang, J.L. Chen, X.M. Zhu, Z. Yang, J.F. Wang. J. Am. Chem. Soc. 139(2017) 13837-13846. |
[5] | D.Z. Ren, J. Ying, M.L. Xiao, Y.P. Deng, J.H. Ou, J.B. Zhu, G.H. Liu, Y. Pei, S. Li, A.M. Jauhar, H.L. Jin, S. Wang, D. Su, A.P. Yu, Z.W. Chen, Adv. Funct. Mater. 30(2020) 1908167. |
[6] | S.D. Lacey, Q. Dong, Z. Huang, J. Luo, H. Xie, Z. Lin, D.J. Kirsch, V. Vattipalli, C. Povinelli, W. Fan, R. Shahbazian-Yassar, D. Wang, L. Hu, Nano Lett. 19(2019) 5149-5158. |
[7] | M. Lin, G.H. Kim, J.H. Kim, J.W. Oh, J.M. Nam. J. Am. Chem. Soc. 139(2017) 10180-10183. |
[8] | U. Aslam, S. Chavez, S. Linic, Nat. Nanotechnol. 12 (2017) 1000-1005. |
[9] | B. Zhang, X.L. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Garcia-Melchor, L.L. Han, J.X. Xu, M. Liu, L.R. Zheng, F.P.G. de Arquer, C.T. Dinh, F.J. Fan, M.J. Yuan, E. Yassitepe, N. Chen, T. Regier, P.F. Liu, Y.H. Li, P. De Luna, A. Jan- mohamed, H.L.L. Xin, H.G. Yang, A. Vojvodic, E.H. Sargent, Science 352 (2016) 333-337. |
[10] | M. Rycenga, C.M. Cobley, J. Zeng, W.Y. Li, C.H. Moran, Q. Zhang, D. Qin, Y.N. Xia, Chem. Rev. 111(2011) 3669-3712. |
[11] | C. Chiang, M.H. Huang, Small 11 (2015) 6018-6025. |
[12] | Y.C. Tsao, S. Rej, C.Y. Chiu, M.H. Huang. J. Am. Chem. Soc. 136(2014) 396-404. |
[13] | C.B. Gao, Y.X. Hu, M.S. Wang, M.F. Chi, Y.D. Yin. J. Am. Chem. Soc. 136(2014) 7474-7479. |
[14] | X. Li, T. Zhang, J. Yu, C. Xing, X. Li, W. Cai, Y. Li, ACS Appl. Mater. Interfaces 12 (2020) 40702-40710. |
[15] | C. Xing, S. Zhong, J. Yu, X. Li, A. Cao, D. Men, B. Wu, W. Cai, Y. Li, J. Mater. Chem. C 8 (2020) 3838-3845. |
[16] | R.B. Jiang, H.J. Chen, L. Shao, Q. Li, J.F. Wang, Adv. Mater. 24 (2012) Op200-Op207. |
[17] | F. Novotny, J. Plutnar, M. Pumera, Adv. Funct. Mater. 29(2019) 1903041. |
[18] | I. Haidar, A. Day, P. Decorse, S. Lau-Truong, A. Chevillot-Biraud, J. Aubard, N. Fe- lidj, L. Boubekeur-Lecaque, Chem. Mater. 31(2019)2741-2749. |
[19] | C.C. Li, L. Sun, Y.Q. Sun, T. Teranishi, Chem. Mater. 25(2013) 2580-2590. |
[20] | G.L. Brett, Q. He, C. Hammond, P.J. Miedziak, N. Dimitratos, M. Sankar, A.A. Herzing, M. Conte, J.A. Lopez-Sanchez, C.J. Kiely, D.W. Knight, S.H. Taylor, G.J. Hutchings, , Angew. Chem. Int. Ed. 50(2011) 10136-10139. |
[21] | J.W. Zheng, J. Qu, H.Q. Lin, Q. Zhang, X. Yuan, Y.H. Yang, Y.Z. Yuan, ACS Catal. 6(2016) 6662-6669. |
[22] | C. Wang, H.G. Yin, R. Chan, S. Peng, S. Dai, S.H. Sun, Chem. Mater. 21(2009) 433-435. |
[23] | B. Zugic, L.C. Wang, C. Heine, D.N. Zakharov, B.A.J. Lechner, E.A. Stach, J. Biener, M. Salmeron, R.J. Madix, C.M. Friend, Nat. Mater. 16(2017) 558-564. |
[24] | M. Sahoo, S. Mansingh, K.M. Parida, J. Mater. Chem. A 7 (2019) 7614-7627. |
[25] | V. Fauzia, D. Irmavianti, L. Roza, M.A.E. Hafizah, C. Imawan, A.A. Umar, Mater. Chem. Phys. 225(2019) 443-450. |
[26] | M.S. Shore, J.W. Wang, A.C. Johnston-Peck, A.L. Oldenburg, J.B. Tracy, Small 7(2011) 230-234. |
[27] | J.F. Huang, Y.H. Zhu, C.X. Liu, Y.F. Zhao, Z.H. Liu, M.N. Hedhili, A. Fratalocchi, Y. Han, Small 11 (2015) 5214-5221. |
[28] | K. Park, R.A. Vaia, Adv. Mater. 20(2008) 3882-3886. |
[29] | Y. Ni, C. Kan, L. He, X. Zhu, M. Jiang, D. Shi, Photonics Res. 7(2019) 558-565. |
[30] | W. Albrecht, J.E.S. van der Hoeven, T.S. Deng, P.E. de Jongh, A. van Blaaderen, Nanoscale 9 (2017) 2845-2851. |
[31] | Y.C. Bai, C.B. Gao, Y.D. Yin, Nanoscale 9 (2017) 14875-14880. |
[32] | J. Biener, A. Wittstock, L.A. Zepeda-Ruiz, M.M. Biener, V. Zielasek, D. Kramer, R.N. Viswanath, J. Weissmuller, M. Baumer, A.V. Hamza, Nat. Mater. 8(2009) 47-51. |
[33] | X.Y. Lang, A. Hirata, T. Fujita, M.W. Chen, Nat. Nanotechnol. 6(2011) 232-236. |
[34] | A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer, Science 327 (2010) 319-322. |
[35] | J.H. Zhong, A. Chimeh, A. Korte, F. Schwarz, J.M. Yi, D. Wang, J.X. Zhan, P. Schaaf, E. Runge, C. Lienau, Nano Lett. 18(2018) 4 957-4 964. |
[36] | R. Ron, E. Haleva, A. Salomon, Adv. Mater. 30(2018) 1706755. |
[37] | X. Lyu, Y. Jia, X. Mao, D. Li, G. Li, L. Zhuang, X. Wang, D. Yang, Q. Wang, A. Du, X. Yao, Adv. Mater. 32(2020) 2003493. |
[38] | W.J. Lee, E.Y. Park, D. Choi, D. Lee, J. Koo, J.G. Min, Y. Jung, S.B. Hong, K. Kim, C. Kim, S. Kim, ACS Appl. Mater. Interfaces 12 (2020) 32270-32277. |
[39] | T. Zhang, Y. Sun, L. Hang, H. Li, G. Liu, X. Zhang, X. Lyu, W. Cai, Y. Li, ACS Appl. Mater. Interfaces 10 (2018) 9792-9801. |
[40] | T. Zhang, Y. Sun, L. Hang, H. Li, G. Liu, X. Zhang, X. Lyu, W. Cai, Y. Li, ACS Appl. Mater. Interfaces 10 (2018) 9792-9801. |
[41] | T. Fujita, P.F. Guan, K. McKenna, X.Y. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Er- lebacher, M.W. Chen, Nat. Mater. 11(2012) 775-780. |
[42] | J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410 (2001) 450-453. |
[43] | N. Kamiuchi, K. Sun, R. Aso, M. Tane, T. Tamaoka, H. Yoshida, S. Takeda, Nat. Commun. 9(2018) 2060. |
[44] | G. Xi, L. Zuo, X. Li, Y. Jin, R. Li, T. Zhang. J. Mater. Sci. Technol. 70(2021) 197-204. |
[45] | Y. Jiang, Y. He, H. Gao. J. Mater. Sci. Technol. 74(2021) 89-104. |
[46] | P. Liu, Q. Chen, Y. Ito, J.H. Han, S.F. Chu, X.D. Wang, K.M. Reddy, S.X. Song, A. Hirata, M.W. Chen, Nano Lett. 20(2020) 1944-1951. |
[47] | S.L. Ke, C.X. Kan, Y. Ni, X.Z. Zhu, M.M. Jiang, C.S. Wang, X.G. Zhu, Z.S. Li, D.N. Shi, Mater. Des. 177(2019) 107837. |
[48] | C. Hanske, M.N. Sanz-Ortiz, L.M. Liz-Marzan, Adv. Mater. 30(2018) 1707003. |
[49] | H. Zhang, C. Wang, H.L. Sun, G. Fu, S. Chen, Y.J. Zhang, B.H. Chen, J.R. Anema, Z.L. Yang, J.F. Li, Z.Q. Tian, Nat. Commun. 8(2017) 15447. |
[50] | J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Nature 464 (2010) 392-395. |
[51] | J.F. Li, X.D. Tian, S.B. Li, J.R. Anema, Z.L. Yang, Y. Ding, Y.F. Wu, Y.M. Zeng, Q.Z. Chen, B. Ren, Z.L. Wang, Z.Q. Tian, Nat. Protoc. 8(2013) 52-65. |
[52] | T.R. Zhang, J.P. Ge, Y.X. Hu, Q. Zhang, S. Aloni, Y.D. Yin, Angew. Chem. Int. Ed. 47(2008) 5806-5811. |
[53] | Y. Chen, P.F. Xu, H.R. Chen, Y.S. Li, W.B. Bu, Z. Shu, Y.P. Li, J.M. Zhang, L.X. Zhang, L.M. Pan, X.Z. Cui, Z.L. Hua, J. Wang, L.L. Zhang, J.L. Shi, Adv. Mater. 25(2013) 3100-3105. |
[54] | X.L. Fang, C. Chen, Z.H. Liu, P.X. Liu, N.F. Zheng, Nanoscale 3 (2011) 1632-1639. |
[55] | S. Park, P.X. Yang, P. Corredor, M.J. Weaver. J. Am. Chem. Soc. 124(2002) 2428-2429. |
[56] | W. Song, M.Q. Chi, M. Gao, B. Zhao, C. Wang, X.F. Lu, J. Mater. Chem. C 5 (2017) 7465-7471. |
[57] | W. Xie, C. Herrmann, K. Kompe, M. Haase, S. Schlucker. J. Am. Chem. Soc. 133(2011) 19302-19305. |
[58] | E.M. van Schrojenstein Lantman, T. Deckert-Gaudig, A.J.G. Mank, V. Deckert, B.M. Weckhuysen . Nat. Nanotechnol. 7(2012) 583-586. |
[59] | E. Menumerov, R.A. Hughes, S. Neretina, Nano Lett. 16(2016) 7791-7797. |
[60] | R.D. Neal, R.A. Hughes, P. Sapkota, S. Ptasinska, S. Neretina, ACS Catal. 10(2020) 10040-10050. |
[61] | S. Gomez-Grana, B. Goris, T. Altantzis, C. Fernandez-Lopez, E. Carbo-Argibay, A. Guerrero-Martinez, N. Almora-Barrios, N. Lopez, I. Pastoriza-Santos, J. Perez-Juste, S. Bals, G. Van Tendeloo, L.M. Liz-Marzan, J.Phys. Chem. Lett. 4(2013) 2209-2216. |
[62] | J.R. Kitchin, J.K. Norskov, M.A. Barteau, J.G. Chen, Phys. Rev. Lett. 93(2004) 156801. |
[63] | S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 7(2008) 333-338. |
[1] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[2] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[3] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[4] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
[5] | Yaxin Bi, Yanling Yang, Xiao-Lei Shi, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Guoquan Suo, Siyu Lu, Zhi-Gang Chen. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4 [J]. J. Mater. Sci. Technol., 2021, 83(0): 102-112. |
[6] | Wei Chen, Lei You, Guanglin Xia, Xuebin Yu. A balance between catalysis and nanoconfinement towards enhanced hydrogen storage performance of NaAlH4 [J]. J. Mater. Sci. Technol., 2021, 79(0): 205-211. |
[7] | Meng Wang, Kailiang Jian, Zepeng Lv, Dong Li, Gangqiang Fan, Run Zhang, Jie Dang. MoS2/Co9S8/MoC heterostructure connected by carbon nanotubes as electrocatalyst for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 29-34. |
[8] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
[9] | Linlin Zhang, Wenxing Peng, YaKun Li, Rui Qin, Dong Yue, Chengjun Ge, Jianjun Liao. Constructing built-in electric field in graphitic carbon nitride hollow nanospheres by co-doping and modified in-situ Ni2P for broad spectrum photocatalytic activity [J]. J. Mater. Sci. Technol., 2021, 90(0): 143-149. |
[10] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
[11] | Wuyou Wang, Xuewen Wang, Lei Gan, Xinfei Ji, Zili Wu, Rongbin Zhang. All-solid-state Z-scheme BiVO4-Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution [J]. J. Mater. Sci. Technol., 2021, 77(0): 117-125. |
[12] | Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction [J]. J. Mater. Sci. Technol., 2021, 77(0): 163-168. |
[13] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[14] | Panyong Kuang, Jingxiang Low, Bei Cheng, Jiaguo Yu, Jiajie Fan. MXene-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 18-44. |
[15] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||