J. Mater. Sci. Technol. ›› 2021, Vol. 86: 110-116.DOI: 10.1016/j.jmst.2021.01.042
• Research Article • Previous Articles Next Articles
Yimeng Zhaoa, Xuan Lia, Xiaobin Liua, Jiazi Bia, Yang Wua, Ruijuan Xiaob, Ran Lia,*(), Tao Zhanga,*(
)
Received:
2021-01-05
Accepted:
2021-01-10
Published:
2021-09-30
Online:
2021-09-24
Contact:
Ran Li,Tao Zhang
About author:
zhangtao@buaa.edu.cn (T. Zhang).Yimeng Zhao, Xuan Li, Xiaobin Liu, Jiazi Bi, Yang Wu, Ruijuan Xiao, Ran Li, Tao Zhang. Balancing benefits of strength, plasticity and glass-forming ability in Co-based metallic glasses[J]. J. Mater. Sci. Technol., 2021, 86: 110-116.
Fig. 1. XRD patterns of the as-cast Co55Ta10B35-xSix (x?=?0, 2, 5) and Co55-yTa10B35-ySi2 (y?=?8) BMGs with the maximum diameters for glass formation.
Alloys | ρ (g/cm3) | Dc (mm) | Tg (K) | Tx (K) | Tm (K) | Tl (K) | ΔTx (K) | Trg | γ | E (GPa) | G (GPa) | B (GPa) | ν | σy (MPa) | σc (MPa) | εp (%) | Hv (GPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Co55Ta10B35 | 8.912 | 1 | 966 | 1038 | 1442 | 1520 | 72 | 0.636 | 0.418 | 250 | 95 | 248 | 0.316 | 5891 | 6030 | 0.5 | 16.5 |
Co55Ta10B33Si2 | 9.242 | 3 | 920 | 988 | 1362 | 1384 | 68 | 0.665 | 0.429 | 241 | 92 | 235 | 0.310 | 5684 | 5817 | 3.3 | 15.9 |
Co55Ta10B30Si5 | 9.423 | 3 | 890 | 949 | 1290 | 1313 | 59 | 0.678 | 0.431 | 233 | 89 | 210 | 0.309 | 5544 | 5651 | 0.3 | 15.1 |
Co63Ta10B25Si2 | 9.326 | 4 | 870 | 918 | 1370 | 1398 | 48 | 0.622 | 0.405 | 227 | 85 | 224 | 0.335 | 5254 | 5519 | 6.4 | 15.3 |
Table 1 Glass-forming ability, thermal parameters, elastic moduli, mechanical properties and other physical properties of Co55+ yTa10B35-x-ySix (x?=?0, 2, 5 @y?=?0 and x?=?2 @y?=?8) bulk metallic glasses.
Alloys | ρ (g/cm3) | Dc (mm) | Tg (K) | Tx (K) | Tm (K) | Tl (K) | ΔTx (K) | Trg | γ | E (GPa) | G (GPa) | B (GPa) | ν | σy (MPa) | σc (MPa) | εp (%) | Hv (GPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Co55Ta10B35 | 8.912 | 1 | 966 | 1038 | 1442 | 1520 | 72 | 0.636 | 0.418 | 250 | 95 | 248 | 0.316 | 5891 | 6030 | 0.5 | 16.5 |
Co55Ta10B33Si2 | 9.242 | 3 | 920 | 988 | 1362 | 1384 | 68 | 0.665 | 0.429 | 241 | 92 | 235 | 0.310 | 5684 | 5817 | 3.3 | 15.9 |
Co55Ta10B30Si5 | 9.423 | 3 | 890 | 949 | 1290 | 1313 | 59 | 0.678 | 0.431 | 233 | 89 | 210 | 0.309 | 5544 | 5651 | 0.3 | 15.1 |
Co63Ta10B25Si2 | 9.326 | 4 | 870 | 918 | 1370 | 1398 | 48 | 0.622 | 0.405 | 227 | 85 | 224 | 0.335 | 5254 | 5519 | 6.4 | 15.3 |
Fig. 4. Neighbor solute atom (B and Si) number distribution for B-centered clusters in Co55Ta10B35, Co55Ta10B33Si2, and Co63Ta10B25Si2 BMGs. The index <n> along the lateral axis denotes the atomic number of B and Si in B-centered cluster.
Fig. 5. (a) The stress-strain curve of Co55Ta10B35-xSix (x?=?0, 2, 5) and Co55-yTa10B35-ySi2 (y?=?8) BMGs under compressive mode. (b)-(e) SEM images of fracture-surface morphologies for the typical failed samples of Co55Ta10B33Si2 BMG.
Fig. 6. The relationship between Poisson's ratio and plastic strain of various BMG systems: (a) all kinds of BMGs including Co-, Fe-, Cr-, Hf-, Mg-, Pd-, Pt-, Zr-, Cu-, and Ni-based ones; (b) “brittle” BMGs including Co-, Fe-, Cr- and Mg-based ones.
Fig. 7. Stress-strain curves in plastic deformation stage for (a) Co55Ta10B35, (b) Co55Ta10B33Si2, and (c) Co63Ta10B25Si2 BMGs. The statistics of stress drops distribution for (d) Co55Ta10B35, (e) Co55Ta10B33Si2, and (f) Co63Ta10B25Si2 BMGs in plastic deformation stage of the stress-strain curves. (g) The schematic diagram of the formation and propagation of shear bands, and (g) the corresponding SEM image of the side-view morphology for Co63Ta10B25Si2 BMG after failure.
Fig. 8. (a) Relationship among GFA, strength and plasticity for our developed Co-based BMGs and other reported ones. (b) Relationship between Tg and plasticity for our developed Co-based BMGs and other reported ones. (Ⅰ) Co-Ta-B [5,7], (Ⅱ) Co-Fe-B-Si-Nb [17,48], (Ⅲ) Co-Fe-Ni-P-C-B [49], (Ⅳ) Co-Nb-B [16], (Ⅴ) Co-(Mo, W)-B [21,50], (Ⅵ) Co-Mo-P-B [51] and (Ⅶ) Co-Cr-Mo-C-B [22].
[1] |
W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R 44 (2004) 45-89.
DOI URL |
[2] |
M.F. Ashby, A.L. Greer, Scr. Mater. 54(2006) 321-326.
DOI URL |
[3] |
A. Inoue, A. Takeuchi, Acta Mater. 59(2011) 2243-2267.
DOI URL |
[4] | W.L. Johnson, JOM 54 (2002) 40-43. |
[5] |
J.F. Wang, R. Li, N.B. Hua, T. Zhang, J. Mater. Res. 26(2011) 2072-2079.
DOI URL |
[6] |
J.F. Wang, R. Li, R.J. Xiao, T. Xu, Y. Li, Z.Q. Liu, L. Huang, N.B. Hua, G. Li, Y.C. Li, T. Zhang, Appl. Phys. Lett. 99(2011), 151911.
DOI URL |
[7] |
J.F. Wang, L.G. Wang, S.K. Guan, S.J. Zhu, R. Li, T. Zhang, J. Alloys Compd. 617(2014) 7-11.
DOI URL |
[8] |
T. Itoi, A. Inoue, Mater. Trans. JIM 41 (2007) 1256-1262.
DOI URL |
[9] |
A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari, Nat. Mater. 2(2003) 661-663.
DOI URL |
[10] |
C. Chang, B.L. Shen, A. Inoue, Appl. Phys. Lett. 88(2006), 011901.
DOI URL |
[11] |
T. Zhang, Q. Yang, Y.F. Ji, R. Li, S.J. Pang, J.F. Wang, T. Xu, Chin. Sci. Bull. 56(2011) 3972-3977.
DOI URL |
[12] |
W.H. Wang, Prog. Mater. Sci. 57(2012) 487-656.
DOI URL |
[13] |
H.S. Chen, J.T. Krause, E. Coleman, J. Non-Cryst. Solids 18 (1975) 157-171.
DOI URL |
[14] |
J.J. Lewandowski, W.H. Wang, A.L. Greer, Philos. Mag. Lett. 85(2005) 77-87.
DOI URL |
[15] |
Z.Q. Liu, W.H. Wang, M.Q. Jiang, Z.F. Zhang, Philos. Mag. Lett. 94(2014) 658-668.
DOI URL |
[16] |
C.C. Dun, H.S. Liu, B.L. Shen, J. Non-Cryst. Solids 358 (2012) 3060-3064.
DOI URL |
[17] |
Q.Q. Wang, J. Zhou, Q.S. Zeng, G.L. Zhang, K.B. Yin, T. Liang, W.M. Yang, M. Stoica, L.T. Sun, B.L. Shen, Materialia 9 (2019), 100561.
DOI URL |
[18] |
Y.Q. Cheng, A.J. Cao, E. Ma, Acta Mater. 57(2009) 3253-3267.
DOI URL |
[19] |
D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Proc. Natl. Acad. Sci. U. S. A. 105(2008) 14769-14772.
DOI PMID |
[20] |
J. Schroers, W.L. Johnson, Phys. Rev. Lett. 93(2004), 255506.
PMID |
[21] | L.M. Lai, R.G. He, K.L. Ding, T.H. Liu, R.Y. Liu, Y.X. Chen, S.F. Guo, J. Non-Cryst. Solids 524 (2019), 119657. |
[22] |
Y.Y. Cheng, C. Chen, M.J. Shi, T. Zhang, J. Non-Cryst. Solids 410 (2015) 155-159.
DOI URL |
[23] |
T. Xu, R. Li, R.J. Xiao, G. Liu, J.F. Wang, T. Zhang, Mater. Sci. Eng. A 626 (2015) 16-26.
DOI URL |
[24] | J.H. Yao, J.Q. Wang, Y. Li, Appl. Phys. Lett. 92(2008), 255506. |
[25] | J.M. Park, G. Wang, R.W. Li, N. Mattern, J. Eckert, D.H. Kim, Appl. Phys. Lett. 96(2010) 2189. |
[26] |
J.F. Wang, R. Li, N.B. Hua, L. Huang, T. Zhang, Scr. Mater. 65(2011) 536-539.
DOI URL |
[27] |
X.J. Gu, S.J. Poon, G.J. Shiflet, M. Widom, Acta Mater. 56(2008) 88-94.
DOI URL |
[28] |
X.J. Gu, A.G. Mcdermott, S.J. Poon, G.J. Shiflet, Appl. Phys. Lett. 88(2006), 211905.
DOI URL |
[29] |
X.J. Gu, S.J. Poon, G.J. Shiflet, Scr. Mater. 57(2007) 289-292.
DOI URL |
[30] |
T. Xu, S.J. Pang, H.F. Li, T. Zhang, J. Non-Cryst. Solids 410 (2015) 20-25.
DOI URL |
[31] |
T. Xu, S.J. Pang, T. Zhang, J. Alloys Compd. 625(2015) 318-322.
DOI URL |
[32] |
L. Zhang, Y.Q. Cheng, A.J. Cao, J. Xu, E. Ma, Acta Mater. 57(2009) 1154-1164.
DOI URL |
[33] |
L. Zhang, L.L. Shi, J. Xu, J. Non-Cryst. Solids 355 (2009) 1005-1007.
DOI URL |
[34] |
L. Zhang, E. Ma, J. Xu, Intermetallics 16 (2008) 584-586.
DOI URL |
[35] |
L.Q. Ma, L.M. Wang, T. Zhang, A. Inoue, Mater. Trans. 43(2002) 2357-2359.
DOI URL |
[36] |
Q. Zheng, H. Ma, E. Ma, J. Xu, Scr. Mater. 55(2006) 541-544.
DOI URL |
[37] |
L.L. Shi, J. Xu, J. Non-Cryst. Solids 357 (2011) 2926-2933.
DOI URL |
[38] |
Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu, Scr. Mater. 56(2007) 161-164.
DOI URL |
[39] |
J.Q. Wang, P. Yu, H.Y. Bai, J. Non-Cryst. Solids 354 (2008) 5440-5443.
DOI URL |
[40] |
E.F. Lambson, W.A. Lambson, J.E. Macdonald, M.R. Gibbs, G.A. Saunders, D. Turnbull, Phys. Rev. B 33 (1986) 2380.
PMID |
[41] |
K.F. Yao, Y.Q. Yang, N. Chen, Intermetallics 15 (2007) 639-643.
DOI URL |
[42] |
R.T. Qu, Z.Q. Liu, R.F. Wang, Z.F. Zhang, J. Alloys Compd. 637(2015) 44-54.
DOI URL |
[43] |
W.L. Johnson, K. Samwer, Phys. Rev. Lett. 95(2005), 195501.
PMID |
[44] |
D.H. Xu, G. Duan, W.L. Johnson, C. Garland, Acta Mater. 52(2004) 3493-3497.
DOI URL |
[45] |
B.A. Sun, L.P. Yu, G. Wang, X. Tong, C. Geng, J.T. Wang, J.L. Ren, W.H. Wang, Phys. Rev. B 101 (2020), 224111.
DOI URL |
[46] |
B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, W.H. Wang, Phys. Rev. Lett. 105(2010), 035501.
DOI URL |
[47] |
B.A. Sun, W.H. Wang, Appl. Phys. Lett. 98(2011), 201902.
DOI URL |
[48] |
Q.Q. Wang, G.L. Zhang, J. Zhou, C.C. Yuan, B.L. Shen, J. Alloys Compd. 820(2019), 153105.
DOI URL |
[49] |
C.Z. Li, Q. Li, M.C. Li, C.T. Chang, H.X. Li, Y.Q. Dong, Y.F. Sun, J. Alloys Compd. 791(2019) 947-951.
DOI URL |
[50] | L.M. Lai, K.L. Ding, T.H. Liu, Y.X. Chen, S.F. Guo, J. Non-Cryst. Solids 544 (2020), 120194. |
[51] |
L.Y. Bie, Q. Li, D. Cao, H.X. Li, J.J. Zhang, C.T. Chang, Y.F. Sun, Intermetallics 71 (2016) 7-11.
DOI URL |
[1] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[2] | Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 221-23. |
[3] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[4] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[5] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[6] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
[7] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[8] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[9] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[10] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[11] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[12] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[13] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[14] | Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength [J]. J. Mater. Sci. Technol., 2021, 69(0): 129-137. |
[15] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||