J. Mater. Sci. Technol. ›› 2021, Vol. 86: 91-109.DOI: 10.1016/j.jmst.2020.12.078
• Review Article • Previous Articles Next Articles
Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu*()
Received:
2020-11-17
Accepted:
2020-12-30
Published:
2021-09-30
Online:
2021-09-24
Contact:
Tong Liu
About author:
*E-mail address: tongliu@buaa.edu.cn (T. Liu).Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu. A review on carbon/magnetic metal composites for microwave absorption[J]. J. Mater. Sci. Technol., 2021, 86: 91-109.
Fig. 1. Mechanisms of microwave absorption, including resonance loss, eddy current loss, dipole polarization and interface polarization. Reproduced with permission from Refs. [61,62,69,70].
Fig. 2. (a) Preparation of CoxNi100-x@C by arc-plasma method. (b) Synthetic process of CoNi@C microspheres by solvothermal method. (c) Formation of FeNi-C core-shell NPs by CVD method. Reproduced with permission from Refs. [92,96,108].
Fig. 3. (a) Synthesis process of Fe@C microspheres. (b) TEM image, (c, d) line scanning profiles, (e) dielectric loss, (f) magnetic loss and (g) microwave absorption mechanism of the Fe@C hollow microspheres. Reproduced with permission from Ref. [125].
Fig. 4. (a) Fabrication process of FeCo/C nanofibers. (b-d) SEM, TEM images and EDX elemental mapping. (e) Impedance matching and (f) attenuation constant. (g) Microwave absorption model of FeCo/C nanofibers. Reproduced with permission from Ref. [130].
Fig. 5. (a) Synthetic progress of the M@N-CNTs. (b-d) SEM and TEM images of Fe@N-CNTs. (e) Microwave absorption mechanism for the M@N-CNTs nanocomposites. Reproduced with permission from Ref. [140].
Fig. 6. (a) Fabrication process of N-rGA/Ni. (b) SEM image, (c) TEM image, (d) Cole-Cole plots and (e) reflection loss of N-rGA/Ni (600). Reproduced with permission from Ref. [149].
Fig. 7. (a) Synthetic route for the Co/C foams. (b) SEM image and (c) TEM image of Co/C-700. (d) Impedance matching and attenuation constant. (e) 3D contour maps of RL values for Co/C-700 foams. Reproduced with permission from Ref. [157].
Fig. 8. (a, b) TEM images, (c) HRTEM image, (d) dielectric loss tangent of Co@C NPs. (e) Plots of RL curves for the Co@C-50 wt.%. Reproduced with permission from Ref. [159].
Fig. 9. (a) Synthesis process of the microporous Co@C NPs. (b) TEM image of the CoAl@C NPs. (c, d) TEM and HRTEM images of dealloyed NPs. Plots of (e) tan δεand (f) tan δμ. (g) 3-D reflection loss plots of S500. Reproduced with permission from Ref. [166].
Fig. 10. (a) Fabricating flower-like Nix/C microspheres. (b) TEM image of the Ni2.0/C microspheres. (c) Absorbing mechanism of the Nix/C microspheres. Reproduced with permission from Ref. [174].
Fig. 11. (a) Synthesis of yolk-shell Co3Fe7@C. (b) SEM image, (c) TEM image and (d) reflection loss for the optimized Co3Fe7@C. (e) Microwave absorption mechanism of yolk-shell Co3Fe7@C. Reproduced with permission from Ref. [180].
Method | Preparation principle | Advantages | Disadvantages |
---|---|---|---|
Arc-plasma | In an inert atmosphere, the material is evaporated by controlling the arc discharge, and then the corresponding product is obtained on the cathode or the wall of the vacuum chamber during the cooling process. | Form high-quality nanophase structures faster | Difficult to scale up; Poor controllability |
Solvothermal/ Hydrothermal | Under certain temperature and pressure, crystal growth or chemical reaction is carried out in water or other solutions. | Wide applicability; Low energy; Consumption; Strong controllability; Easy operation; High yield | Difficult to prepare pure metals; Unclear growth mechanism; Produce harmful substances |
Chemical vapor deposition | To decompose the organic gas at high temperature and interact on the surface of the substrate, and then deposit on the substrate to form the composites | High purity; Strong design and controllability | High cost; Complex equipment; Energy consummation |
Table 1 The preparation of carbon/magnetic metal composites.
Method | Preparation principle | Advantages | Disadvantages |
---|---|---|---|
Arc-plasma | In an inert atmosphere, the material is evaporated by controlling the arc discharge, and then the corresponding product is obtained on the cathode or the wall of the vacuum chamber during the cooling process. | Form high-quality nanophase structures faster | Difficult to scale up; Poor controllability |
Solvothermal/ Hydrothermal | Under certain temperature and pressure, crystal growth or chemical reaction is carried out in water or other solutions. | Wide applicability; Low energy; Consumption; Strong controllability; Easy operation; High yield | Difficult to prepare pure metals; Unclear growth mechanism; Produce harmful substances |
Chemical vapor deposition | To decompose the organic gas at high temperature and interact on the surface of the substrate, and then deposit on the substrate to form the composites | High purity; Strong design and controllability | High cost; Complex equipment; Energy consummation |
Various carbon/magnetic metal composites | Sample | RLmin (dB) | EAB (GHz) | Refs. |
---|---|---|---|---|
Carbon microspheres/magnetic metal composites | C@CoFe spheres | -16.0 | 2.0 | [ |
FeNi/CS microspheres | -24.9 | 3.9 | [ | |
Fe@C hollow microspheres | -37.7 | 7.5 | [ | |
Carbon nanofibers/magnetic metal composites | Co/N-CNFs composites | -25.7 | 4.3 | [ |
FeCo/CNFs composites | -24.1 | 2.9 | [ | |
FeCo/C nanofibers | -59.9 | 6.0 | [ | |
Carbon nanotubes/magnetic metal composites | NiCo2/CNTs nanohybrids | -25.5 | 4.4 | [ |
Fe@N-CNTs | -30.4 | 5.7 | [ | |
Porous CNTs/Co composites | -60.4 | 5.1 | [ | |
Co-C/MWCNTs nanocomposite | -50.0 | 4.3 | [ | |
Graphene oxide/magnetic metal composites | Fe/rGO composites | -45.0 | 4.4 | [ |
CoNi/rGO aerogels | -53.3 | 3.5 | [ | |
N-rGA/Ni manifests | -60.8 | 5.1 | [ | |
Carbon foams/magnetic metal composites | Ni/carbon foam composites | -45.0 | 4.5 | [ |
CoNi@PRM-NC composites | -56.0 | 3.8 | [ | |
Porous Co/C foam | -56.5 | 6.0 | [ | |
Carbon-coated magnetic metal composites | Microporous Co@C nanocomposites | -68.3 | 8.1 | [ |
Microporous Co@C nanoparticles | -111.5 | 13.2 | [ | |
Rose-like Fe@C composites | -71.5 | 3.0 | [ | |
Flower-like Ni/C composites | -52.4 | 5.0 | [ | |
Flower-like Nix/Carbon microspheres | -43.7 | 6.5 | [ | |
Yolk-shell NiCo/GC/NPC nanocomposites | -52.2 | 7.2 | [ | |
Fe@void@C powders | -66.5 | 5.5 | [ | |
Co3Fe7@C yolk-shell composites | -35.3 | 8.4 | [ |
Table 2 Summary of the microwave absorption properties of various carbon/magnetic metal composites.
Various carbon/magnetic metal composites | Sample | RLmin (dB) | EAB (GHz) | Refs. |
---|---|---|---|---|
Carbon microspheres/magnetic metal composites | C@CoFe spheres | -16.0 | 2.0 | [ |
FeNi/CS microspheres | -24.9 | 3.9 | [ | |
Fe@C hollow microspheres | -37.7 | 7.5 | [ | |
Carbon nanofibers/magnetic metal composites | Co/N-CNFs composites | -25.7 | 4.3 | [ |
FeCo/CNFs composites | -24.1 | 2.9 | [ | |
FeCo/C nanofibers | -59.9 | 6.0 | [ | |
Carbon nanotubes/magnetic metal composites | NiCo2/CNTs nanohybrids | -25.5 | 4.4 | [ |
Fe@N-CNTs | -30.4 | 5.7 | [ | |
Porous CNTs/Co composites | -60.4 | 5.1 | [ | |
Co-C/MWCNTs nanocomposite | -50.0 | 4.3 | [ | |
Graphene oxide/magnetic metal composites | Fe/rGO composites | -45.0 | 4.4 | [ |
CoNi/rGO aerogels | -53.3 | 3.5 | [ | |
N-rGA/Ni manifests | -60.8 | 5.1 | [ | |
Carbon foams/magnetic metal composites | Ni/carbon foam composites | -45.0 | 4.5 | [ |
CoNi@PRM-NC composites | -56.0 | 3.8 | [ | |
Porous Co/C foam | -56.5 | 6.0 | [ | |
Carbon-coated magnetic metal composites | Microporous Co@C nanocomposites | -68.3 | 8.1 | [ |
Microporous Co@C nanoparticles | -111.5 | 13.2 | [ | |
Rose-like Fe@C composites | -71.5 | 3.0 | [ | |
Flower-like Ni/C composites | -52.4 | 5.0 | [ | |
Flower-like Nix/Carbon microspheres | -43.7 | 6.5 | [ | |
Yolk-shell NiCo/GC/NPC nanocomposites | -52.2 | 7.2 | [ | |
Fe@void@C powders | -66.5 | 5.5 | [ | |
Co3Fe7@C yolk-shell composites | -35.3 | 8.4 | [ |
[1] |
Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Adv. Funct. Mater. 29(2019), 1901448.
DOI URL |
[2] |
Y. Wang, B. Jiang, Z. Liu, R. Li, L. Hou, Z. Li, Y. Duan, X. Yan, F. Yang, Y. Li. J. Mater. Sci. Technol. 70(2021) 214-223.
DOI |
[3] |
M. Ning, Q. Man, G. Tan, Z. Lei, J. Li, R.W. Li, ACS Appl. Mater. Interfaces 12 (2020) 20785-20796.
DOI URL |
[4] |
G. Wang, S. Ong, Y. Zhao, Z.J. Xu, G. Ji, J. Mater. Chem. A 8 (2020) 24368.
DOI URL |
[5] | C. Chen, S.F. Zeng, X.C. Han, Y.Q. Tan, W.L. Feng, H.H. Shen, S.M. Peng, H.B. Zhang, J. Mater. Sci 54(2020) 223-229. |
[6] |
X. Li, L. Yu, W. Zhao, Y. Shi, L. Yu, Y. Dong, Y. Zhu, Y. Fu, X. Liu, F. Fu, Chem. Eng. J. 379(2020), 122393.
DOI URL |
[7] | W. Zhou, L. Long, Y. Li, J. Mater. Sci 35(2019) 2809-2813. |
[8] |
M. Zhou, W. Gu, G. Wang, J. Zheng, C. Pei, F. Fan, G. Ji, J. Mater. Chem. A 8 (2020) 24267.
DOI URL |
[9] |
H. Liao, D. Li, B. Wang, Q. Wu, T. Liu, J. Alloys Compd. 856(2020), 158175.
DOI URL |
[10] |
T. Zhu, S. Chang, Y. Song, M. Lahoubi, W. Wang, Chem. Eng. J. 373(2019) 755-766.
DOI URL |
[11] |
T. Shang, Q. Lu, L. Chao, Y. Qin, Y. Yun, G. Yun, Appl. Surf. Sci. 434(2018) 234-242.
DOI URL |
[12] |
H. Wang, C. Wang, Y. Xiong, Q. Yao, Q. Chang, Y. Chen, C. Jin, Q. Sun, RSC Adv. 7(2017) 24764-24770.
DOI URL |
[13] |
G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, J. Colloid Interface Sci. 536(2019) 548-555.
DOI URL |
[14] |
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Chem. Mater. 23(2011) 1587-1593.
DOI URL |
[15] |
X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, W. Du, Chem. Eng. J. 396(2020), 125205.
DOI URL |
[16] |
L. Zhang, P. Dai, X. Yu, Y. Li, Z. Bao, J. Zhu, K. Zhu, M. Wu, X. Liu, G. Li, H. Bi, Appl. Surf. Sci. 359(2015) 723-728.
DOI URL |
[17] |
T. Liu, P.H. Zhou, J.L. Xie, L.J. Deng, J. Appl. Phys. 110(2011), 033918.
DOI URL |
[18] |
J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu, X. Shen, J. Mater. Chem. A 2 (2014) 16905-16914.
DOI URL |
[19] |
T. Liu, Y. Pang, X. Xie, W. Qi, Y. Wu, S. Kobayashi, J. Zheng, X. Li, J. Alloys Compd. 667(2016) 287-296.
DOI URL |
[20] |
N. Zhang, Y. Huang, M. Wang, X. Liu, M. Zong, J. Colloid Interface Sci. 534(2019) 110-121.
DOI URL |
[21] |
B. Zhao, X. Zhang, J. Deng, Z. Bai, L. Liang, Y. Li, R. Zhang, Phys. Chem. Chem. Phys. 20(2018) 28623-28633.
DOI URL |
[22] |
T. Liu, Y. Pang, H. Kikuchi, Y. Kamada, S. Takahashi, J. Mater. Chem. C 3 (2015) 6232-6239.
DOI URL |
[23] |
C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, ACS Appl. Mater. Interfaces 7 (2015) 20090-20099.
DOI URL |
[24] |
Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, S. Jiang, Compos. Part A 135 (2020), 105960.
DOI URL |
[25] |
A. Hazarika, B.K. Deka, K. Kong, D. Kim, Y.W. Nam, J.H. Choi, C.G. Kim, Y.B. Park, H.W. Park, Compos. Part B 140 (2018) 123-132.
DOI URL |
[26] |
D. Chen, F. Luo, L. Gao, W. Zhou, D. Zhu, J. Eur. Ceram 38(2018) 4440-4445.
DOI URL |
[27] | W.C. Li, C.S. Li, L.H. Lin, Y. Wang, J.S. Zhang, J. Mater. Sci 35(2019) 2658-2664. |
[28] |
H. Lv, G. Ji, M. Wang, C. Shang, H. Zhang, Y. Du, RSC Adv. 4(2014) 57529-57533.
DOI URL |
[29] |
J. Qiao, D. Xu, L. Lv, X. Zhang, F. Wang, W. Liu, J. Liu, ACS Appl. Nano Mater. 1(2018) 5297-5306.
DOI URL |
[30] |
J. Deng, Q. Wang, Y. Zhou, B. Zhao, R. Zhang, RSC Adv. 7(2017) 9294-9302.
DOI URL |
[31] |
X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du, J. Mater. Chem. C 4 (2016) 1860-1870.
DOI URL |
[32] | H. Liao, Y. Pang, D. Li, T. Liu, J. Mater. Sci 30(2019) 5620-5630. |
[33] | J. Xu, X. Qi, Y. Sun, Z. Wang, Y. Liu, C. Luo, B. Li, W. Zhong, Q. Fu, C. Pan, ACSSustain. Chem. Eng. 6(2018) 12046-12054. |
[34] |
H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, J. Mater. Chem. C 5 (2017) 491-512.
DOI URL |
[35] |
Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Chem. Eng. J. 383(2020), 123096.
DOI URL |
[36] |
S. Wang, Q. Jiao, X. Liu, Y. Xu, Q. Shi, S. Yue, Y. Zhao, H. Liu, C. Feng, D. Shi, ACS Sustain. Chem. Eng. 7(2019) 7004-7013.
DOI URL |
[37] |
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei, R. Che, W. Lu, Carbon 157 (2020) 130-139.
DOI URL |
[38] |
Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu, Q. Zeng, K. Pei, R. Che, W. Lu, J. Mater. Chem. C 8 (2020) 2123-2134.
DOI URL |
[39] |
Y. Cheng, H. Zhao, Y. Zhao, J. Cao, J. Zheng, G. Ji, Carbon 161 (2020) 870-879.
DOI URL |
[40] | M.H. Li, X.M. Fan, H.L. Xu, F. Ye, J.M. Xue, X.Q. Li, L.F. Cheng, J. Mater. Sci 59(2020) 164-172. |
[41] |
N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, ACS Sustain. Chem. Eng. 6(2018) 12471-12480.
DOI URL |
[42] |
H.J. Wu, L.D. Wang, Y.M. Wang, S.L. Guo, H. Wu, Mater. Res. Innov. 18(2013) 273-279.
DOI URL |
[43] |
J. Ma, X. Wang, W. Cao, C. Han, H. Yang, J. Yuan, M. Cao, Chem. Eng. J. 339(2018) 487-498.
DOI URL |
[44] |
J. Feng, Y. Hou, Y. Wang, L. Li, ACS Appl. Mater. Interfaces 9 (2017) 14103-14111.
DOI URL |
[45] |
H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, J. Mater. Chem. C 3 (2015) 10232-10241.
DOI URL |
[46] |
B. Wang, H. Liao, X. Xie, Q. Wu, T. Liu, J. Colloid Interface Sci. 578(2020) 346-357.
DOI URL |
[47] |
J. Thomassin, X. Lou, C. Pagnoulle, A. Saib, L. Bednarz, I. Huynen, R. Jérôme, C. Detrembleur, J. Phys. Chem. C 111 (2007) 11186-11192.
DOI URL |
[48] |
X. Liu, Y. Ma, Q. Zhang, Z. Zheng, L.S. Wang, D.L. Peng, Appl. Surf. Sci. 445(2018) 82-88.
DOI URL |
[49] |
B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Phys. Chem. Chem. Phys. 17(2015) 2531-2539.
DOI URL |
[50] |
M. Green, X. Chen, J. Materiomics 5 (2019) 503-541.
DOI URL |
[51] |
D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui, H. Zhao, X. Han, Carbon 157 (2020) 478-485.
DOI URL |
[52] |
M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li, A. Meng, Q. Li, Y. Lin, Compos. Part B 179 (2019), 107525.
DOI URL |
[53] | D. Griffiths, Introduction to Electrodynamics, Cambridge University Press, 1999. |
[54] |
E. Michielssen, J.M. Sajer, S. Ranjithan, R. Mittra, IEEE Trans. Microwave Theory Tech 41 (1993) 1024-1031.
DOI URL |
[55] | A.R.V. Hippel, S.O. Morgan, Dielectric Materials and Applications, The Technology Press of M.I.T. and John Wiley, 1954. |
[56] | L. Chen, C. Ong, C. Neo, V. Varadan, John Wiley, 2004. |
[57] |
S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Chum, IEEE Trans. Magn. 27(1991) 5462-5464.
DOI URL |
[58] |
H. Wang, H. Ma, Mater. Res. Bull. 122(2020), 110692.
DOI URL |
[59] |
D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70(2010) 400-409.
DOI URL |
[60] |
Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, X.Y. Fang. J. Appl.Phys. 106(2009), 054303.
DOI URL |
[61] |
M. Wu, A. Darboe, X. Qi, R. Xie, S. Qin, C. Deng, G. Wu, W. Zhong, J. Mater. Chem. C 8 (2020) 11936.
DOI URL |
[62] |
Y. Cheng, J. Seow, H. Zhao, Z. Xu, G. Ji, Nano-Micro Lett. 12(2020) 125.
DOI PMID |
[63] |
P. Ayala, R. Arenal, A. Loiseau, A. Rubio, T. Pichler, Rev. Mod. Phys. 82(2010) 1843-1885.
DOI URL |
[64] |
K.S. Cole, R.H. Cole, J. Chem. Phys. 9(1941) 341-351.
DOI URL |
[65] |
B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, G. Xu, J. Alloys Compd. 728(2017) 1065-1075.
DOI URL |
[66] |
M. Wang, Y. Lin, H. Yang, Y. Qiu, S. Wang, J. Alloys Compd. 817(2020) 153265.
DOI URL |
[67] |
L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang, L. Liu, X. Ren, H. Yang, J. Mater. Chem. A 2 (2014) 14940-14946.
DOI URL |
[68] |
R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J. Shi, J. He, Chem. Eng. J. 337(2018) 242-255.
DOI URL |
[69] |
R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang, W. Liu, Q. He, W. Wu, X. Bu, X. Yang, Carbon 156 (2020) 378-388.
DOI URL |
[70] |
L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, Chem. Eng. J. 383(2020), 123099.
DOI URL |
[71] |
B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, ACS Appl. Mater. Interfaces 8 (2016) 3730-3735.
DOI URL |
[72] |
A. Aharoni, J. Appl. Phys. 69(1991) 7762-7764.
DOI URL |
[73] |
M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, ACS Appl. Mater. Interfaces 4 (2012) 6949-6956.
DOI URL |
[74] |
Y. Liu, T. Cui, T. Wu, Y. Li, G. Tong, Nanotechnology 27 (2016), 165707.
DOI URL |
[75] |
X.G. Liu, Z.Q. Ou, D.Y. Geng, Z. Han, J.J. Jiang, W. Liu, Z.D. Zhang, Carbon 48 (2010) 891-897.
DOI URL |
[76] |
G. Toneguzzo, O. Viau, F. Acher, E. Guillet, F. Bruneton, F. Fievet-Vincent, J. Mater. Sci. 35(2000) 3767-3784.
DOI URL |
[77] |
N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z. Guo, Carbon 145 (2019) 433-444.
DOI URL |
[78] |
X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, J. Mater. Chem. A 3 (2015) 5535-5546.
DOI URL |
[79] |
Z. Ma, Y. Zhang, C. Cao, J. Yuan, Q. Liu, J. Wang, Phys. B 406 (2011) 4620-4624.
DOI URL |
[80] |
Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin, J. Xie, N. Mahmood, S. Dou, R. Che, L. Deng, Chem. Eng. J. 384(2020), 123371.
DOI URL |
[81] |
P. Wang, X. Wang, L. Qiao, J. Zhang, G. Wang, B. Duan, J. Magn. Magn 468(2018) 193-199.
DOI URL |
[82] |
J. Huo, L. Wang, H. Yu, J. Mater. Sci. 44(2009) 3917-3927.
DOI URL |
[83] |
Z. Guo, S. Park, H. Hahn, S. Wei, M. Moldovan, A. Karki, D. Young, J. Appl. Phys. 101 (2007), 09M511.
DOI URL |
[84] | D. Dai, F. Shi, Y. Chen, S. Chu, Ferro Magnetics, Science Press, Beijing, 1976. |
[85] |
Y. Wang, H. Wang, J. Ye, L. Shia, X. Feng, Chem. Eng. J. 383(2020), 123096.
DOI URL |
[86] |
M. Huang, L. Wang, K. Pei, W. You, X. Yu, Z. Wu, R. Che, Small 16 (2020), 2000158.
DOI URL |
[87] |
C. Journet, P. Bernier, Appl. Phys. A 67 (1998) 1-9.
DOI URL |
[88] | B. Elliott, J. Host, V. Dravid, M. Teng, J. Hwang, J. Mater. Res. Technol.(1997) 3328-3344. |
[89] | H. Huang, Y. Gao, C.F. Fang, A.M. Wu, X.L. Dong, B.S. Kim, J.H. Byun, G.F. Zhang, D.Y. Zhou, J. Mater. Sci 34(2018) 496-502. |
[90] |
Y. Li, R. Liu, X. Pang, X. Zhao, Y. Zhang, G. Qin, X. Zhang, Carbon 126 (2018) 372-381.
DOI URL |
[91] |
Y. Pang, X. Xie, D. Li, W. Chou, T. Liu, J. Magn. Magn 426(2017) 211-216.
DOI URL |
[92] |
H. Wang, Y.Y. Dai, D.Y. Geng, S. Ma, D. Li, J. An, J. He, W. Liu, Z.D. Zhang, Nanoscale 7 (2015) 17312-17319.
DOI PMID |
[93] |
Y. Li, J. Wang, R. Liu, X. Zhao, X. Wang, X. Zhang, G. Qin, J. Alloys Compd. 724(2017) 1023-1029.
DOI URL |
[94] |
H. Liao, D. Li, C. Zhou, T. Liu, J. Alloys Compd. 782(2019) 556-565.
DOI URL |
[95] |
X. Zhang, H. Wang, R. Hu, C. Huang, W. Zhong, L. Pan, Y. Feng, T. Qiu, C. Zhang, J. Yang, Appl. Surf. Sci. 484(2019) 383-391.
DOI URL |
[96] |
Y. Liu, Z. Chen, W. Xie, F. Qiu, Y. Zhang, S. Song, C. Xiong, L. Dong, J. Alloys Compd. 809(2019), 151837.
DOI URL |
[97] |
D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang, H. Zhao, L. Cui, X. Han, J. Mater. Chem. C 7 (2019) 5037-5046.
DOI URL |
[98] |
C. Feng, X. Liu, Y. Sun, C. Jin, Y. Lv, RSC Adv. 4(2014) 22710-22715.
DOI URL |
[99] |
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Carbon 111 (2017) 722-732.
DOI URL |
[100] |
C. Ruan, Z. Li, D. Zhang, X. Yuan, C. Liang, Y. Chang, H. Huang, L. Xu, M. Chen, Carbon 161 (2020) 622-628.
DOI URL |
[101] |
I. Levchenko, K. Ostrikov, M. Keidar, S. Xu, J. Appl. Phys. 98(2005), 064304.
DOI URL |
[102] |
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Adv. Funct. Mater. 28(2018) 1707205.
DOI URL |
[103] |
B. Liang, S. Wang, D. Kuang, L. Hou, B. Yu, L. Lin, L. Deng, H. Huang, J. He, Nanotechnology 29 (2018), 085604.
DOI URL |
[104] |
X. Qi, J. Xu, Q. Hu, W. Zhong, Y. Du, Mater. Sci. Eng. B 198 (2015)108-112.
DOI URL |
[105] |
T. Zou, H. Li, N. Zhao, C. Shi, J. Alloys Compd. 496(2010) L22-L24.
DOI URL |
[106] |
A. Azizi, T. Khosla, B.S. Mitchell, N. Alem, N.S. Pesika, Part. Part. Syst. Charact. 31(2014) 474-480.
DOI URL |
[107] |
D. Kuang, L. Hou, S. Wang, H. Luo, L. Deng, J.L. Mead, H. Huang, M. Song, Carbon 153 (2019) 52-61.
DOI URL |
[108] | D. Kuang, S. Wang, L. Hou, H. Luo, L. Deng, M. Song, J. He, H. Huang, Mater.Res. Bull. 126(2020), 110837. |
[109] |
Y. Wu, W. Pan, Y. Li, B. Yang, B. Meng, R. Li, R. Yu, ACS Appl. Nano Mater. 2(2019) 4367-4376.
DOI URL |
[110] |
F. Wang, Y. Sun, D. Li, B. Zhong, Z. Wu, S. Zuo, D. Yan, R. Zhuo, J. Feng, P. Yan, Carbon 134 (2018) 264-273.
DOI URL |
[111] |
Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, L. Zheng, ACS Appl. Mater. Interfaces 7 (2015) 13604-13611.
DOI URL |
[112] |
G. Fan, Y. Jiang, C. Hou, X. Deng, Z. Liu, L. Zhang, Z. Zhang, R. Fan, J. Alloys Compd. 835(2020), 155345.
DOI URL |
[113] |
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Adv. Mater. 26(2014) 8120-8125.
DOI URL |
[114] |
J.L. Snoek, Physica 14 (1948) 207-217.
DOI URL |
[115] | H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci 35(2019) 2778-2784. |
[116] |
C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, T. Zhang, J. Phys. Chem. C 114 (2010) 3196-3203.
DOI URL |
[117] |
Z. Zhang, Y. Ji, J. Li, Q. Tan, Z. Zhong, F. Su, ACS Appl. Mater. Interfaces 7 (2015) 6300-6309.
DOI URL |
[118] |
B. Zhong, C. Wang, Y. Yu, L. Xia, G. Wen, J. Colloid Interface Sci. 505(2017) 402-409.
DOI URL |
[119] |
X.P. Li, Z. Deng, Y. Li, H.B. Zhang, S. Zhao, Y. Zhang, X.Y. Wu, Z.Z. Yu, Carbon, 147(2019) 172-181.
DOI URL |
[120] |
C. Wang, T. Xu, C.A. Wang, Ceram. Int. 42(2016) 9178-9182.
DOI URL |
[121] |
J. Li, L. Wang, D. Zhang, Y. Qu, G. Wang, G. Tian, A. Liu, H. Yue, S. Feng, Mater. Chem. Front. 1(2017) 1786-1794.
DOI URL |
[122] |
C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, Y. Li, Carbon 108 (2016) 234-241.
DOI URL |
[123] |
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, J. Mater. Chem. A 3 (2015) 10345-10352.
DOI URL |
[124] |
M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, J. Mater. Chem. A 2 (2014) 16403-16409.
DOI URL |
[125] |
Z. Deng, Y. Li, H. Zhang, Y. Zhang, J. Luo, L. Liu, Z. Yu, Compos. Part B 177 (2019), 107346.
DOI URL |
[126] |
G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, J. Phys. Chem. C 116 (2012) 9196-9201.
DOI URL |
[127] |
X. Yuan, R. Wang, W. Huang, L. Kong, S. Guo, L. Cheng, ACS Appl. Mater. Interfaces 12 (2020) 13208-13216.
DOI URL |
[128] |
J. Wang, Y. Huyan, Z. Yang, A. Zhang, Q. Zhang, B. Zhang, Carbon 152 (2019) 255-266.
DOI URL |
[129] |
H. Liu, Y. Li, M. Yuan, G. Sun, H. Li, S. Ma, Q. Liao, Y. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 22591-22601.
DOI URL |
[130] |
Y. Wang, Y. Sun, Y. Zong, T. Zhu, L. Zhang, X. Li, H. Xing, X. Zheng, J. Alloys Compd. 824(2020), 153980.
DOI URL |
[131] |
B. Huang, J. Yue, Y. Wei, X. Huang, X. Tang, Z. Du, Appl. Surf. Sci. 483(2019) 98-105.
DOI |
[132] |
R. Lv, F. Kang, J. Gu, X. Gui, J. Wei, K. Wang, D. Wu, Appl. Phys. Lett. 93(2008), 223105.
DOI URL |
[133] | X.M. Liu, N. Chai, Z.J. Yu, H.L. Xu, X.L. Li, J.Q. Liu, X.W. Yin, R. Riedel, J. Mater. Sci 35(2019) 2859-2867. |
[134] |
A. Wadhawan, D. Garrett, J.M. Perez, Appl. Phys. Lett. 83(2003) 2683-2685.
DOI URL |
[135] |
G. Tong, W. Wu, Q. Hua, Y. Miao, J. Guan, H. Qian, J. Alloys Compd. 509(2011) 451-456.
DOI URL |
[136] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16(2004) 401-405.
DOI URL |
[137] | H. Huang, Y. Gao, C.F. Fang, A.M. Wu, X.L. Dong, B.S. Kim, J.H. Byun, G.F. Zhang, D.Y. Zhou, J. Mater. Sci 34(2018) 496-502. |
[138] |
X. Qi, Q. Hu, H. Cai, R. Xie, Z. Bai, Y. Jiang, S. Qin, W. Zhong, Y. Du, Sci. Rep. 6(2016) 37972.
DOI URL |
[139] | B. Wang, C. Zhang, C. Mu, R. Yang, J. Xiang, J. Song, F. Wen, Z. Liu, J. Magn.Magn. Mater. 471(2019) 185-191. |
[140] |
M. Ning, J. Li, B. Kuang, C. Wang, D. Su, Y. Zhao, H. Jin, M. Cao, Appl. Surf. Sci. 447(2018) 244-253.
DOI URL |
[141] |
Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, ACS Appl. Mater. Interfaces 8 (2016) 34686-34698.
DOI URL |
[142] |
R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Chem. Eng. J. 362(2019) 513-524.
DOI URL |
[143] |
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320 (2008) 1308.
DOI PMID |
[144] | H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.M. Lei, J. Zhang, Y.C. Zhou, J. Mater. Sci 35(2019) 1700-1705. |
[145] |
B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Nanoscale 6 (2014) 5754-5761.
DOI PMID |
[146] |
C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, Appl. Phys. Lett. 98(2011), 072906.
DOI URL |
[147] |
X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao, D. Wang, Y. Yang, Y. Du, Sci. Rep. 3(2013) 3421.
DOI URL |
[148] |
H.B. Zhao, J.B. Cheng, J.Y. Zhu, Y.Z. Wang, J. Mater. Chem. C 7 (2019) 441-448.
DOI URL |
[149] |
J. Tang, N. Liang, L. Wang, J. Li, G. Tian, D. Zhang, S. Feng, H. Yue, Carbon 152 (2019) 575-586.
DOI URL |
[150] |
H. Xu, X. Yin, M. Li, F. Ye, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon 132 (2018) 343-351.
DOI URL |
[151] |
L. Yan, M. Zhang, S. Zhao, T. Sun, B. Zhang, M. Cao, Y. Qin, Chem. Eng. J. 382(2020), 122860.
DOI URL |
[152] | H. Chen, H. Xiang, F.Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci 36(2020) 134-139. |
[153] |
X. Ye, Z. Chen, M. Li, T. Wang, C. Wu, J. Zhang, Q. Zhou, H. Liu, S. Cui, ACS Sustainable Chem. Eng. 7(2019) 18395-18404.
DOI URL |
[154] |
H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, ACS Appl. Mater. Interfaces 8 (2016) 1468-1477.
DOI URL |
[155] |
Z. Fang, C. Li, J. Sun, H. Zhang, J. Zhang, Carbon 45 (2007) 2873-2879.
DOI URL |
[156] |
J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, Carbon 152 (2019) 545-555.
DOI URL |
[157] |
T. Huang, Z. Wu, J. Lin, Q. Yu, D. Tan, L. Li, ACS Appl. Electron. Mater. 1(2019) 2541-2550.
DOI URL |
[158] |
W. Zhou, L. Long, P. Xiao, Y. Li, H. Luo, W. Hua, R. Yin, Ceram. Int. 43(2017) 5628-5634.
DOI URL |
[159] |
T. Liu, X. Xie, Y. Pang, S. Kobayashi, J. Mater. Chem. C 4 (2016) 1727-1735.
DOI URL |
[160] |
Y. Huang, Y. Wang, Z. Li, Z. Yang, C. Shen, C. He, J. Phys. Chem. C 118 (2014) 26027-26032.
DOI URL |
[161] |
C. Ni, D. Wu, X. Xie, B. Wang, H. Wei, Y. Zhang, X. Zhao, L. Liu, B. Wang, W. Du. J. Magn. Magn. Mater 503(2020), 166631.
DOI URL |
[162] |
C. Ma, B. Zhao, Q. Dai, B. Fan, G. Shao, R. Zhang, Adv. Powder Technol. 28(2017) 438-442.
DOI URL |
[163] |
G.X. Tong, W.H. Wu, Q. Hu, J.H. Yuan, R. Qiao, H.S. Qian, Mater. Chem. Phys. 132(2012) 563-569.
DOI URL |
[164] |
T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Nanoscale 6 (2014) 2447-2454.
DOI URL |
[165] |
X. Xie, Y. Pang, H. Kikuchi, T. Liu, Phys. Chem. Chem. Phys. 18(2016) 30507-30514.
DOI URL |
[166] |
D. Li, H. Liao, H. Kikuchi, T. Liu, ACS Appl. Mater. Interfaces 9 (2017) 44704-44714.
DOI URL |
[167] |
J. Luo, Y. Hu, L. Xiao, G. Zhang, H. Guo, G. Hao, W. Jiang, Nanotechnology 31 (2019), 085708.
DOI URL |
[168] | H. Chen, B. Zhao, Z. Zhao, H. Xiang, F.Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci 47(2020) 216-222. |
[169] |
H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, ACS Appl. Mater. Interfaces 7 (2015) 9776-9783.
DOI URL |
[170] |
Q. Liu, X. Xu, W. Xia, R. Che, C. Chen, Q. Cao, J. He, Nanoscale 7 (2015) 1736-1743.
DOI URL |
[171] |
D. Xu, N. Wu, K. Le, F. Wang, Z. Wang, L. Wu, W. Liu, A. Ouyang, J. Liu, J. Mater. Chem. C 8 (2020) 2451-2459.
DOI URL |
[172] |
X. Li, D. Du, C. Wang, H. Wang, Z. Xu, J. Mater. Chem. C 6 (2018) 558-567.
DOI URL |
[173] |
Z. Zhang, Y. Lv, X. Chen, Z. Wu, Y. He, L. Zhang, Y. Zou. J. Magn. Magn. Mater. 487(2019), 165334.
DOI URL |
[174] |
C. Li, J. Sui, X. Jiang, Z. Zhang, L. Yu, Chem. Eng. J. 385(2020), 123882.
DOI URL |
[175] |
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28(2016) 486-490.
DOI URL |
[176] |
K. Wang, G. Wan, G. Wang, Z. He, S. Shi, L. Wu, G. Wang, J. Colloid Interface Sci. 511(2018) 307-317.
DOI URL |
[177] |
X. Liu, L.S. Wang, Y. Ma, Y. Qiu, Q. Xie, Y. Chen, D.L. Peng, Chem. Eng. J. 333(2018) 92-100.
DOI URL |
[178] |
J. Xiong, Z. Xiang, B. Deng, M. Wu, L. Yu, Z. Liu, E. Cui, F. Pan, R. Liu, W. Lu, Appl. Surf. Sci. 513(2020), 145778.
DOI URL |
[179] |
S. Gao, Y. Zhang, H. Xing, H. Li, Chem. Eng. J. 387(2020), 124149.
DOI URL |
[180] |
H. Li, S. Bao, Y. Li, Y. Huang, J. Chen, H. Zhao, Z. Jiang, Q. Kuang, Z. Xie, ACS Appl. Mater. Interfaces 10 (2018) 28839-28849.
DOI URL |
[181] |
X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv, L. Shao, Y. Liu, ACS Appl. Mater. Interfaces 12 (2020) 17870-17880.
DOI URL |
[182] |
C. Li, J. Sui, Z. Zhang, X. Jiang, Z. Zhang, L. Yu, Chem. Eng. J. 375(2019), 122017.
DOI URL |
[183] |
F. Wu, K. Yang, Q. Li, T. Shah, M. Ahmad, Q. Zhang, B. Zhang, Carbon 173 (2021) 918-931.
DOI URL |
[1] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[2] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
[3] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[4] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[5] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[6] | Weimian Guan, Jie Yuan, Hao Lv, Tao Zhu, Youtong Fang, Jiabin Liu, Hongtao Wang, Zhihui Li, Zhigong Tang, Wei Yang. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide [J]. J. Mater. Sci. Technol., 2021, 81(0): 1-12. |
[7] | Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 81(0): 219-228. |
[8] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
[9] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[10] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[11] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
[12] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[13] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[14] | Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating [J]. J. Mater. Sci. Technol., 2021, 83(0): 145-160. |
[15] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||