J. Mater. Sci. Technol. ›› 2021, Vol. 86: 77-90.DOI: 10.1016/j.jmst.2021.01.038
• Research Article • Previous Articles Next Articles
Zhenni Leia, Pengfei Gaoa,*(), Xianxian Wangb, Mei Zhana, Hongwei Lia
Received:
2020-11-09
Accepted:
2021-01-02
Published:
2021-09-30
Online:
2021-09-24
Contact:
Pengfei Gao
About author:
*E-mail address: gaopengfei@nwpu.edu.cn (P. Gao).Zhenni Lei, Pengfei Gao, Xianxian Wang, Mei Zhan, Hongwei Li. Analysis of anisotropy mechanism in the mechanical property of titanium alloy tube formed through hot flow forming[J]. J. Mater. Sci. Technol., 2021, 86: 77-90.
Forming parameters | Values |
---|---|
Roller feed rate (mm/r) | 1 |
Mandrel rotation speed (r/min) | 89 |
Attacking angle of the roller (°) | 22.5 |
Exit angle of the roller (°) | 25 |
Diameter of the roller (mm) | 260 |
Nose radius of the roller (mm) | 8 |
Forming pass | 4 |
Reduced thickness of each forming pass (mm) | 3 |
Table 1 Main forming parameters in flow forming process.
Forming parameters | Values |
---|---|
Roller feed rate (mm/r) | 1 |
Mandrel rotation speed (r/min) | 89 |
Attacking angle of the roller (°) | 22.5 |
Exit angle of the roller (°) | 25 |
Diameter of the roller (mm) | 260 |
Nose radius of the roller (mm) | 8 |
Forming pass | 4 |
Reduced thickness of each forming pass (mm) | 3 |
Fig. 2. The morphology and EBSD results of the microstructures of initial billet (a) and the flow formed component (b): (a1, b1) microstructure morphologies; (a2, b2) inverse pole figures (left) and pole figures (right) of α phase.
Fig. 3. Schematic for extracting and mechanically machining tensile specimen from the formed tube: (a) relative locations between the extracted tensile specimens and the formed tube component; (b) the dimensions of tensile specimen (unit: mm).
Fig. 4. Initial microstructure morphology and the corresponding EBSD results of the observation regions in the quasi-in-situ tensile specimens under RD (a) and CD (b) loading: (a1, b1) microstructure morphologies; (a2, b2) inverse pole figures (left) and pole figures (right) of α phase.
Paused point | Paused engineering strain under RD loading (%) | Paused engineering strain under CD loading (%) |
---|---|---|
Yielding | 1.2 | 1.2 |
Hardening | 3.0 | 3.0 |
Necking | 11.0 | 6.5 |
Fracture | 13.5 | 8.5 |
Table 2 Paused strains during the quasi-in-situ tensile test.
Paused point | Paused engineering strain under RD loading (%) | Paused engineering strain under CD loading (%) |
---|---|---|
Yielding | 1.2 | 1.2 |
Hardening | 3.0 | 3.0 |
Necking | 11.0 | 6.5 |
Fracture | 13.5 | 8.5 |
Strain (%) | No. | Activated slip system | Slip plane and direction | Schmid Factor |
---|---|---|---|---|
1.2 | 1 | prism<a> | (10-10)[- | 0.45 |
2 | prism<a> | (01-10)[ | 0.47 | |
3 | prism<a> | (1-100)[- | 0.42 | |
4 | prism<a> | (10-10)[- | 0.45 | |
5 | prism<a> | (10-10)[- | 0.49 | |
6 | prism<a> | (10-10)[- | 0.31 | |
7 | prism<a> | (01-10)[ | 0.47 | |
8 | prism<a> | (10-10)[- | 0.49 | |
9 | basal<a> | (0002)[- | 0.42 | |
10 | prism<a> | (10-10)[- | 0.49 | |
11 | prism<a> | (01-10)[ | 0.48 | |
12 | prism<a> | (01-10)[ | 0.42 | |
3.0 | 1 | prism<a> | (10-10)[- | 0.50 |
2 | prism<a> | (10-10)[- | 0.44 | |
3 | prism<a> | (01-10)[ | 0.40 | |
4 | prism<a> | (01-10)[ | 0.38 | |
5 | basal <a> | (0002)[- | 0.01 | |
6 | prism<a> | (10-10)[- | 0.43 | |
7 | prism<a> | (1-100)[- | 0.46 | |
8 | prism<a> | (01-10)[ | 0.44 | |
9 | prism<a> | (10-10)[- | 0.41 | |
10 | pyram<a> | (10-11)[- | 0.32 | |
11 | pyram<a> | (01-11)[ | 0.37 | |
12 | basal <a> | (0002)[- | 0.22 | |
13 | prism<a> | (01-10)[ | 0.44 | |
14 | pyram<a> | (-1011)[- | 0.46 | |
15 | pyram<a+c> | (-1101)[- | 0.50 | |
16 | prism<a> | (01-10)[ | 0.39 |
Table 3 The identified slip systems and the corresponding Schmid Factors under RD loading.
Strain (%) | No. | Activated slip system | Slip plane and direction | Schmid Factor |
---|---|---|---|---|
1.2 | 1 | prism<a> | (10-10)[- | 0.45 |
2 | prism<a> | (01-10)[ | 0.47 | |
3 | prism<a> | (1-100)[- | 0.42 | |
4 | prism<a> | (10-10)[- | 0.45 | |
5 | prism<a> | (10-10)[- | 0.49 | |
6 | prism<a> | (10-10)[- | 0.31 | |
7 | prism<a> | (01-10)[ | 0.47 | |
8 | prism<a> | (10-10)[- | 0.49 | |
9 | basal<a> | (0002)[- | 0.42 | |
10 | prism<a> | (10-10)[- | 0.49 | |
11 | prism<a> | (01-10)[ | 0.48 | |
12 | prism<a> | (01-10)[ | 0.42 | |
3.0 | 1 | prism<a> | (10-10)[- | 0.50 |
2 | prism<a> | (10-10)[- | 0.44 | |
3 | prism<a> | (01-10)[ | 0.40 | |
4 | prism<a> | (01-10)[ | 0.38 | |
5 | basal <a> | (0002)[- | 0.01 | |
6 | prism<a> | (10-10)[- | 0.43 | |
7 | prism<a> | (1-100)[- | 0.46 | |
8 | prism<a> | (01-10)[ | 0.44 | |
9 | prism<a> | (10-10)[- | 0.41 | |
10 | pyram<a> | (10-11)[- | 0.32 | |
11 | pyram<a> | (01-11)[ | 0.37 | |
12 | basal <a> | (0002)[- | 0.22 | |
13 | prism<a> | (01-10)[ | 0.44 | |
14 | pyram<a> | (-1011)[- | 0.46 | |
15 | pyram<a+c> | (-1101)[- | 0.50 | |
16 | prism<a> | (01-10)[ | 0.39 |
Strain (%) | No. | Activated slip system | Slip plane and direction | Schmid Factor |
---|---|---|---|---|
1.2 | 1 | prism<a> | (10-10)[- | 0.44 |
2 | prism<a> | (1-100)[ | 0.45 | |
3 | basal <a> | (0002)[- | 0.38 | |
4 | prism<a> | (01-10)[ | 0.39 | |
5 | prism<a> | (1-100)[ | 0.40 | |
6 | prism<a> | (01-10)[ | 0.33 | |
7 | basal <a> | (0002)[- | 0.38 | |
8 | prism<a> | (10-10)[- | 0.47 | |
9 | prism<a> | (1-100)[ | 0.34 | |
10 | prism<a> | (1-100)[ | 0.35 | |
3.0 | 1 | prism<a> | (01-10)[ | 0.47 |
2 | prism<a> | (10-10)[- | 0.44 | |
3 | pyram<a> | (1-101)[ | 0.49 | |
4 | basal <a> | (0002)[- | 0.27 | |
5 | prism<a> | (01-10)[ | 0.47 | |
6 | prism<a> | (01-10)[ | 0.45 | |
7 | prism<a> | (01-10)[ | 0.48 | |
8 | pyram<a> | (-1011)[- | 0.36 | |
9 | basal <a> | (0002)[ | 0.39 | |
10 | prism<a> | (10-10)[- | 0.44 | |
11 | prism<a> | (1-100)[ | 0.34 | |
12 | prism<a> | (10-10)[- | 0.46 | |
13 | basal <a> | (0002)[ | 0.47 | |
14 | prism<a> | (01-10)[ | 0.38 | |
15 | prism<a> | (1-100)[ | 0.37 | |
16 | prism<a> | (1-100)[ | 0.42 |
Table 4 The identified slip systems and the corresponding Schmid Factors under CD loading.
Strain (%) | No. | Activated slip system | Slip plane and direction | Schmid Factor |
---|---|---|---|---|
1.2 | 1 | prism<a> | (10-10)[- | 0.44 |
2 | prism<a> | (1-100)[ | 0.45 | |
3 | basal <a> | (0002)[- | 0.38 | |
4 | prism<a> | (01-10)[ | 0.39 | |
5 | prism<a> | (1-100)[ | 0.40 | |
6 | prism<a> | (01-10)[ | 0.33 | |
7 | basal <a> | (0002)[- | 0.38 | |
8 | prism<a> | (10-10)[- | 0.47 | |
9 | prism<a> | (1-100)[ | 0.34 | |
10 | prism<a> | (1-100)[ | 0.35 | |
3.0 | 1 | prism<a> | (01-10)[ | 0.47 |
2 | prism<a> | (10-10)[- | 0.44 | |
3 | pyram<a> | (1-101)[ | 0.49 | |
4 | basal <a> | (0002)[- | 0.27 | |
5 | prism<a> | (01-10)[ | 0.47 | |
6 | prism<a> | (01-10)[ | 0.45 | |
7 | prism<a> | (01-10)[ | 0.48 | |
8 | pyram<a> | (-1011)[- | 0.36 | |
9 | basal <a> | (0002)[ | 0.39 | |
10 | prism<a> | (10-10)[- | 0.44 | |
11 | prism<a> | (1-100)[ | 0.34 | |
12 | prism<a> | (10-10)[- | 0.46 | |
13 | basal <a> | (0002)[ | 0.47 | |
14 | prism<a> | (01-10)[ | 0.38 | |
15 | prism<a> | (1-100)[ | 0.37 | |
16 | prism<a> | (1-100)[ | 0.42 |
Fig. 9. An example of cross-slip occurring in αp under CD loading: (a) morphology of cross-slip at strain of 3.0 % (hardening); (b) EBSD result of (a); (c) morphology of cross-slip at strain of 6.5 % (necking).
Fig. 11. Damage distribution under RD loading: (a) void distribution in the interior of specimen; (b) microcrack distribution on the surface of specimen.
Fig. 12. Damage distribution under CD loading: (a) void distribution in the interior of specimen; (b) microcrack distribution on the surface of specimen.
Fig. 13. Fractography under RD loading: (a) overall morphology of fracture surface; (b) magnified morphology of center region; (c) detailed morphology of fracture surface; (d1, d2) snake sliding patterns on fracture surface.
Fig. 14. Fractography under CD loading: (a) overall morphology of fracture surface; (b) magnified morphology of center region; (c) detailed morphology of fracture surface.
Fig. 19. Analysis results of the deformation texture and recrystallization texture of the spun microstructure shown in Fig. 2(b2): (a) distribution of the recrystallized α grains (green grains); (b) pole figures of αp grains; (c) pole figures of the recrystallized α grains.
[1] |
D. Banerjee, J.C. Williams, Acta Mater. 61(2013) 844-879.
DOI URL |
[2] | G. Lütjering, J.C. Williams, Berlin, 2007. |
[3] |
K. Wei, Q. Ma, G.C. Wang, X.G. Fan, Int. J. Adv. Manuf. Technol. 108(2020) 1413-1427.
DOI URL |
[4] | M. Fonte, Adv. Mater. Process. 166(2008) 47-48. |
[5] |
M. Zhan, H. Yang, J. Guo, X.X. Wang, Trans. Nonferrous Met. Soc. China 25 (2015) 1732-1743.
DOI URL |
[6] |
C.C. Wong, T.A. Dean, J. Lin, Int. J. Mach. Tool. Manuf. 43(2003) 1419-1435.
DOI URL |
[7] |
O. Music, J.M. Allwood, K. Kawai, J. Mater. Process 210(2010) 3-23.
DOI URL |
[8] |
Z.Z. Yang, W.C. Xu, H. Wu, X.J. Wan, Y. Chen, D.B. Shan, B. Guo, Int. J. Mach. Tool. Manuf. 152(2020), 103530.
DOI URL |
[9] |
D.B. Shan, G.P. Yang, W.C. Xu, J. Mater. Process 209(2009) 5713-5719.
DOI URL |
[10] |
X.X. Wang, P.F. Gao, M. Zhan, K. Yang, Y.D. Dong, Y.K. Li, Chin. J. Aeronaut. 33(2020) 2088-2097.
DOI URL |
[11] |
X.X. Wang, M. Zhan, M.W. Fu, P.F. Gao, J. Guo, F. Ma, J. Mater. Process 261(2018) 86-97.
DOI URL |
[12] |
W.C. Xu, D.B. Shan, Z.L. Wang, G.P. Yang, Y. Lu, D.C. Kang, Trans. Nonferrous Met. Soc. China 17 (2007) 1205-1211.
DOI URL |
[13] |
W. Li, Z. Chen, J. Liu, Q. Wang, G. Sui, Mater. Sci. Eng. A 688 (2017) 322-329.
DOI URL |
[14] |
J.W. Won, C.H. Park, S. Hong, C.S. Lee, Mater. Sci. Eng. A 637 (2015) 215-221.
DOI URL |
[15] |
Z.N. Lei, P.F. Gao, H.W. Li, Y. Cai, M. Zhan, Mater. Sci. Eng. A 753 (2019) 238-246.
DOI URL |
[16] | P.F. Gao, M.W. Fu, M. Zhan, Z.N. Lei, Y.X. Li, J. Mater. Sci 39(2020) 56-73. |
[17] |
C.S. Tan, Q.Y. Sun, L. Xiao, Y.Q. Zhao, J. Sun, Mater. Sci. Eng. A 725 (2018) 33-42.
DOI URL |
[18] |
Z.H. Zhang, W.Y. Li, F.F. Wang, J.L. Li, Mater. Lett. 162(2016) 94-96.
DOI URL |
[19] |
F. Bridier, P. Villechaise, J. Mendez, Acta Mater. 53(2005) 555-567.
DOI URL |
[20] |
W. Zhang, Y.F. Gao, Y.Z. Xia, H.B. Bei, Acta Mater. 134(2017) 53-65.
DOI URL |
[21] |
E. Bertrand, P. Castany, I. Péron, T. Gloriant, Scr. Mater. 64(2011) 1110-1113.
DOI URL |
[22] |
C. Sauer, G. Luetjering, J. Mater. Process 117(2001) 311-317.
DOI URL |
[23] | J.S. Jha, S.P. Toppo, R. Singh, A. Tewari, S.K. Mishra, Mater. Charact. 27(2020), 110780. |
[24] | T.R. Bieler, P.D. Nicolaou, S.L. Semiatin, Metall. Mater. Trans. A 27 (2005) 383-386. |
[25] |
X.N. Peng, H.Z. Guo, T. Wang, Z.K. Yao, Mater. Sci. Eng. A 533 (2012) 55-63.
DOI URL |
[26] |
D. He, J.C. Zhu, S. Zaefferer, D. Raabe, Mater. Des. 56(2014) 937-942.
DOI URL |
[27] |
C.S. Tan, Q.Y. Sun, L. Xiao, Y.Q. Zhao, J. Sun, J. Alloys. Compd. 724(2017) 112-120.
DOI URL |
[28] |
P.F. Gao, G. Qin, X.X. Wang, Y.X. Li, M. Zhan, G.J. Li, J.S. Li, Mater. Sci. Eng. A 739 (2019) 203-213.
DOI URL |
[29] | Q.P. Zhong, Z.H. Zhao, Fractography, Higher Education Press, Beijing, 2006 (In Chinese). |
[30] | Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci 44(2020) 171-190. |
[31] |
Y.P. Pang, Q. Li, Scr. Mater. 130(2017) 223-228.
DOI URL |
[32] |
Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, Q. Li, J. Alloys. Compd. 814(2020), 152297.
DOI URL |
[33] |
J.S. Langer, E. Bouchbinder, T. Lookman, Acta Mater. 58(2010) 3718-3732.
DOI URL |
[34] |
Charles K.C. Lieou, Hashem M. Mourad, Curt A. Bronkhorst, Int. J. Plasticity 119 (2019) 171-187.
DOI URL |
[35] |
K.C. Le, J. Mech. Phys. Solids 111 (2018) 157-169.
DOI URL |
[36] |
G.Z. Quan, J. Pan, Z.H. Zhang, Mater. Des. 94(2016) 523-535.
DOI URL |
[1] | Wenguang Zhu, Changsheng Tan, Ruoyu Xiao, Qiaoyan Sun, Jun Sun. Slip behavior of Bi-modal structure in a metastable β titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2020, 57(0): 188-196. |
[2] | Liu Z., Zhao Z.B., Liu J.R., Wang L., Zhu S.X., Yang G., Gong S.L., Wang Q.J., ang R.Y. Deformation behaviors of as-built and hot isostatically pressed Ti-6Al-4V alloys fabricated via electron beam rapid manufacturing [J]. J. Mater. Sci. Technol., 2019, 35(11): 2552-2558. |
[3] | Yalian Zhang, Fenghua Wang, Jie Dong, Li Jin, Conghui Liu, Wenjiang Ding. Grain refinement and orientation of AZ31B magnesium alloy in hot flow forming under different thickness reductions [J]. J. Mater. Sci. Technol., 2018, 34(7): 1091-1102. |
[4] | Yongxiang ZHAO. Size Evolution of the Surface Short Fatigue Cracks of 1Cr18Ni9Ti Weld Metal [J]. J Mater Sci Technol, 2003, 19(02): 129-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||