J. Mater. Sci. Technol. ›› 2021, Vol. 95: 1-9.DOI: 10.1016/j.jmst.2021.01.090
• Research Article • Next Articles
Ruifeng Donga, Hongchao Koub,*(), Yuhong Zhaoa,*(
), Xiaoyang Zhanga, Ling Yanga, Hua Houa
Received:
2020-12-08
Revised:
2021-01-26
Accepted:
2021-01-30
Published:
2021-12-30
Online:
2021-12-24
Contact:
Hongchao Kou,Yuhong Zhao
About author:
zhaoyuhong@nuc.edu.cn(Y. Zhao).Ruifeng Dong, Hongchao Kou, Yuhong Zhao, Xiaoyang Zhang, Ling Yang, Hua Hou. Morphology characteristics of α precipitates related to the crystal defects and the strain accommodation of variant selection in a metastable β titanium alloy[J]. J. Mater. Sci. Technol., 2021, 95: 1-9.
Fig. 1. (a) SEM-EBSD inverse pole figure (IPF) micrograph of the β solution-treated Ti-7333 alloy indicating the microstructure with equiaxed β grains; (b) TEM bright-field micrograph showing the distinct dislocation lines distributed within the β matrix (as highlighted by white arrows in Fig.1(b)) and the corresponding Selected Area Electron Diffraction (SAED) patterns with (b1) [101]β and (b2) [111]β zone axes, respectively, indicating only β phase detected after the β solution treatment.
Fig. 2. Micrographs of the β solution-treated Ti-7333 alloy after aging treatment at 500 °C for different times: (a) aging treatment for 2 min showing the formation of grain boundary α precipitates (b) aging treatment for 5 min showing the generation of the V-shaped or triangular clusters formed by orientated intragranular α precipitates with a lath-like morphology; (c) aging treatment for 15 min showing the formation widmanstätten α precipitates nearby grain boundaries.
Fig. 3. (a) The variation of volume factions of α precipitates and (b) the corresponding hardness of aging-treated Ti-7333 alloy during aging treatments.
Fig. 4. (a) TEM bright-field micrograph of the β solution-treated Ti-7333 alloy after aging treatment at 500 °C for 2 min showing intragranular α precipitates located nearby the dislocations, and the inset giving the corresponding SAED patterns with ${{[01\bar{1}]}_{\beta }}$ zone axis; (b) corresponding dark-field micrograph of intragranular α precipitates obtained using ${{(01\bar{1}0)}_{\alpha }}$ reflection as indicated by the red circle in the inset of Fig. 4(a).
Fig. 5. (a) TEM bright-field micrograph of the β solution-treated Ti-7333 alloy after aging treatment at 500 °C for 5 min showing that the V-shaped clusters located nearby dislocations and composed of two orientated lath-like intragranular α precipitates; (b) TEM bright-field micrograph of the alloy after aging treatment at 500 °C for 15 min showing that the V-shaped or triangular clusters composed of different orientated intragranular α precipitates.
Fig. 6. BSE micrographs of the β solution-treated Ti-7333 alloy after aging treatment for 3 h at different temperatures: (a) 450 °C; (b) 500 °C and (c) 550 °C.
Aging temperature /°C | Length of α precipitates /μm | With of α precipitates /μm | Volume fraction of α precipitates /% |
---|---|---|---|
450 | 0.987 ± 0.30 | 0.047 ± 0.018 | 61.89 ± 5.46 |
500 | 1.23 ± 0.40 | 0.075 ± 0.021 | 62.23 ± 4.79 |
550 | 3.435 ± 1.132 | 0.146 ± 0.032 | 61.35 ± 2.87 |
Table 1 Morphological parameters of α precipitates of the β solution-treated Ti-7333 alloy after aging treatment for 3 h at different aging temperatures.
Aging temperature /°C | Length of α precipitates /μm | With of α precipitates /μm | Volume fraction of α precipitates /% |
---|---|---|---|
450 | 0.987 ± 0.30 | 0.047 ± 0.018 | 61.89 ± 5.46 |
500 | 1.23 ± 0.40 | 0.075 ± 0.021 | 62.23 ± 4.79 |
550 | 3.435 ± 1.132 | 0.146 ± 0.032 | 61.35 ± 2.87 |
Fig. 7. Crystallographic analyses of α precipitates of the β solution-treated Ti-7333 alloy after aging treatment for 5 min at 500 °C: (a) SEM-EBSD IPF micrograph showing a intragranular α precipitate; (b) {11 11 13}β pole figure of the β grain; (c) {110}β and <111>β pole figures of β grain; (d) {0001}α and $<11\bar{2}0>$ α pole figures of the intragranular α precipitate.
Fig. 8. Crystallographic analyses of α clusters of the β solution-treated Ti-7333 alloy after aging treatment at 500 °C for 5 min: (a) BSE micrograph showing the V-shaped or the triangular clusters composed of α variants; (b) BOR plane and directions pole figures of β grain; (c) BOR plane and directions pole figures of the V-shaped α cluster (as highlighted in the inset); (d) BOR plane and directions pole figures of the triangular α cluster (as highlighted in the inset).
No. | OR | Deformation gradient tensor | Disorientation |
---|---|---|---|
i//$[11\bar{1}]$β; j//[ | |||
V2 | $[11\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & 0.0575 & -0.0584 \\ 0.0575 & 0.9371 & 0.0826 \\ 0.0477 & -0.0674 & 1.098 \\\end{matrix} \right)$ | 90°/[ |
(110)β//(0001)α | |||
V3 | $[\bar{1}11]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & 0.0575 & 0.0584 \\ 0.0575 & 0.9371 & -0.0826 \\ -0.0477 & 0.0674 & 1.0980 \\\end{matrix} \right)$ | 90°/[ |
$(\bar{1}\bar{1}0)$β//(0001)α | |||
V4 | $[\bar{1}\bar{1}\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0221 & 0.0062 & 0 \\ 0.1900 & 0.9724 & 0 \\ 0 & 0 & 1.0184 \\\end{matrix} \right)$ | 10.53°/[ |
$(\bar{1}10)$β//(0001)α | |||
V5 | $[\bar{1}11]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & -0.0793 & -0.0206 \\ 0.0126 & 1.0512 & 0.0016 \\ -0.0736 & -0.1485 & 0.9839 \\\end{matrix} \right)$ | 60.83°/[- |
$(01\bar{1})$β//(0001)α | |||
V6 | $[11\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0396 & -\mathbf{0}.\mathbf{0919} & -\mathbf{0}.\mathbf{1591} \\ 0 & 1.0025 & -0.0275 \\ 0 & -0.0275 & 0.9708 \\\end{matrix} \right)$ | 60°/[ |
(011)β//(0001)α | |||
V7 | $[1\bar{1}1]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0221 & -0.0031 & -0.0054 \\ -0.0950 & 1.0069 & -0.0199 \\ -0.1645 & -0.0199 & 0.9839 \\\end{matrix} \right)$ | 63.2°/[- |
$(0\bar{1}\bar{1})$β//(0001)α | |||
V8 | $[\bar{1}\bar{1}\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & 0.0218 & -0.0790 \\ -0.0700 & 1.0643 & -0.1409 \\ -0.0259 & 0.0092 & 0.9708 \\\end{matrix} \right)$ | 60.83°/[- |
$(0\bar{1}1)$β//(0001)α | |||
V9 | $[1\bar{1}1]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & -0.0793 & 0.0206 \\ 0.0126 & 1.0512 & -0.0016 \\ 0.0736 & 0.1458 & 0.9839 \\\end{matrix} \right)$ | 60.83°/[- |
$(\bar{1}01)$β//(0001)α | |||
V10 | $[\bar{1}\bar{1}\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & 0.0218 & 0.0790 \\ -0.0700 & 1.0643 & 0.1409 \\ 0.0259 & -0.0092 & 0.9708 \\\end{matrix} \right)$ | 60.83°/[- |
$(10\bar{1})$β//(0001)α | |||
V11 | $[\bar{1}11]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0221 & -0.0031 & 0.0054 \\ -0.0950 & 1.0069 & 0.0199 \\ 0.1645 & 0.0199 & 0.9839 \\\end{matrix} \right)$ | 63.2°/[- |
(101)β//(0001)α | |||
V12 | $[11\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0396 & -\mathbf{0}.\mathbf{0919} & \mathbf{0}.\mathbf{1591} \\ 0 & 1.0025 & 0.0275 \\ 0 & 0.0275 & 0.9708 \\\end{matrix} \right)$ | 60°/[ |
(101)β//(0001)α |
Table 3 The orientation relationships between the rest of 11 possible BOR α variants and the parent β grain, the misorientations between 11 possible α variants and V1 and their corresponding deformation gradient tensors expressed in the BOR reference frame between V1 and the β grain.
No. | OR | Deformation gradient tensor | Disorientation |
---|---|---|---|
i//$[11\bar{1}]$β; j//[ | |||
V2 | $[11\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & 0.0575 & -0.0584 \\ 0.0575 & 0.9371 & 0.0826 \\ 0.0477 & -0.0674 & 1.098 \\\end{matrix} \right)$ | 90°/[ |
(110)β//(0001)α | |||
V3 | $[\bar{1}11]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & 0.0575 & 0.0584 \\ 0.0575 & 0.9371 & -0.0826 \\ -0.0477 & 0.0674 & 1.0980 \\\end{matrix} \right)$ | 90°/[ |
$(\bar{1}\bar{1}0)$β//(0001)α | |||
V4 | $[\bar{1}\bar{1}\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0221 & 0.0062 & 0 \\ 0.1900 & 0.9724 & 0 \\ 0 & 0 & 1.0184 \\\end{matrix} \right)$ | 10.53°/[ |
$(\bar{1}10)$β//(0001)α | |||
V5 | $[\bar{1}11]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & -0.0793 & -0.0206 \\ 0.0126 & 1.0512 & 0.0016 \\ -0.0736 & -0.1485 & 0.9839 \\\end{matrix} \right)$ | 60.83°/[- |
$(01\bar{1})$β//(0001)α | |||
V6 | $[11\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0396 & -\mathbf{0}.\mathbf{0919} & -\mathbf{0}.\mathbf{1591} \\ 0 & 1.0025 & -0.0275 \\ 0 & -0.0275 & 0.9708 \\\end{matrix} \right)$ | 60°/[ |
(011)β//(0001)α | |||
V7 | $[1\bar{1}1]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0221 & -0.0031 & -0.0054 \\ -0.0950 & 1.0069 & -0.0199 \\ -0.1645 & -0.0199 & 0.9839 \\\end{matrix} \right)$ | 63.2°/[- |
$(0\bar{1}\bar{1})$β//(0001)α | |||
V8 | $[\bar{1}\bar{1}\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & 0.0218 & -0.0790 \\ -0.0700 & 1.0643 & -0.1409 \\ -0.0259 & 0.0092 & 0.9708 \\\end{matrix} \right)$ | 60.83°/[- |
$(0\bar{1}1)$β//(0001)α | |||
V9 | $[1\bar{1}1]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & -0.0793 & 0.0206 \\ 0.0126 & 1.0512 & -0.0016 \\ 0.0736 & 0.1458 & 0.9839 \\\end{matrix} \right)$ | 60.83°/[- |
$(\bar{1}01)$β//(0001)α | |||
V10 | $[\bar{1}\bar{1}\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 0.9778 & 0.0218 & 0.0790 \\ -0.0700 & 1.0643 & 0.1409 \\ 0.0259 & -0.0092 & 0.9708 \\\end{matrix} \right)$ | 60.83°/[- |
$(10\bar{1})$β//(0001)α | |||
V11 | $[\bar{1}11]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0221 & -0.0031 & 0.0054 \\ -0.0950 & 1.0069 & 0.0199 \\ 0.1645 & 0.0199 & 0.9839 \\\end{matrix} \right)$ | 63.2°/[- |
(101)β//(0001)α | |||
V12 | $[11\bar{1}]$β//$<11\bar{2}0>$α | $\left( \begin{matrix} 1.0396 & -\mathbf{0}.\mathbf{0919} & \mathbf{0}.\mathbf{1591} \\ 0 & 1.0025 & 0.0275 \\ 0 & 0.0275 & 0.9708 \\\end{matrix} \right)$ | 60°/[ |
(101)β//(0001)α |
Fig. 10. Crystal defects analyses of the β solution-treated Ti-7333: (a) TEM bright-field micrograph showing the distinct dislocation lines distributed within β grains (as highlighted by red dotted lines) and the Kikuchi line patterns (the inset) indicating the orientation of the β grain; (b) corresponding <112>β pole figure of the β grain superimposed with the trace of dislocation lines as indicated in Fig.10(a).
Slip systems | Dislocation line vectors of edge type | Dislocation line vectors of screw type | |
---|---|---|---|
β phase with BCC structure in titanium alloys | {110}<111> | <112> | <111> |
{112}<111> | <110> | <111> | |
{123}<111> | <541> | <111> |
Table 4 Three documented dislocation slip systems of β phase and their corresponding vectors of dislocation lines in titanium alloys [[49], [50], [51]].
Slip systems | Dislocation line vectors of edge type | Dislocation line vectors of screw type | |
---|---|---|---|
β phase with BCC structure in titanium alloys | {110}<111> | <112> | <111> |
{112}<111> | <110> | <111> | |
{123}<111> | <541> | <111> |
[1] |
J. Fanning, J. Mater. Eng. Perform. 14 (2005) 788-791.
DOI URL |
[2] |
J. Ferrero, J. Mater. Eng. Perform. 14 (2005) 691-696.
DOI URL |
[3] |
J.K. Fan, Z.X. Zhang, P.Y. Gao, R.M. Yang, H. Li, B. Tang, H.C. Kou, Y.D. Zhang, C. Esling, J.S. Li, J. Mater. Sci. Technol. 38 (2020) 135-147.
DOI URL |
[4] | B. Wang, Z. Liu, Y. Gao, S. Zhang, X. Wang, J. Mater. Sci. Technol. 14 (2007) 335-340. |
[5] |
R.F. Dong, J.S. Li, H.C. Kou, B. Tang, K. Hua, S.B. Liu, Mater. Charact. 129 (2017) 135-142.
DOI URL |
[6] | S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, Acta Mater. 36 (2009) 2136-2147. |
[7] |
T. Furuhara, T. Maki, T. Makino, J. Mater. Process. Technol. 117 (2001) 318-323.
DOI URL |
[8] |
D.L. OuYang, M.W. Fu, S.Q. Lu, Mater. Sci. Eng. A 619 (2014) 26-34.
DOI URL |
[9] |
N. Jones, R. Dashwood, M. Jackson, D. Dye, Scr. Mater. 60 (2009) 571-573.
DOI URL |
[10] |
J. Fan, J. Li, H. Kou, K. Hua, B. Tang, Y. Zhang, Mater. Des. 83 (2015) 499-507.
DOI URL |
[11] |
R.F. Dong, J.S. Li, H.C. Kou, J.K. Fan, B. Tang, J. Mater. Sci. Technol. 35 (2019) 48-54.
DOI URL |
[12] |
K. Gu, B. Zhao, Z. Weng, K. Wang, H. Cai, J. Wang, Mater. Sci. Eng. A 723 (2018) 157-164.
DOI URL |
[13] |
V.C. Opini, C.A.F. Salvador, K.N. Campo, E.S.N. Lopes, R.R. Chaves, R. Caram, Mater. Sci. Eng. A 670 (2016) 112-121.
DOI URL |
[14] |
Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, J. Liu, L.J. Xu, F.T. Kong, Y.Y. Chen, Mater. Sci. Eng. A 631 (2015) 67-74.
DOI URL |
[15] |
Z. Sun, X. Wang, J. Zhang, H. Yang, Mater. Sci. Eng. A 591 (2014) 18-25.
DOI URL |
[16] |
S.V.S.N. Murty, N. Nayan, P. Kumar, P.R. Narayanan, S.C. Sharma, K.M. George, Sci. Eng. A 589 (2014) 174-181.
DOI URL |
[17] |
Z. Zhao, J. Chen, S. Guo, H. Tan, X. Lin, W. Huang, J. Mater. Sci. Technol. 33 (2017) 675-681.
DOI URL |
[18] |
H. Dong, L. Yu, D. Deng, W. Zhou, C. Dong, J. Mater. Sci. Technol. 31 (2015) 962-968.
DOI URL |
[19] |
Z. Wang, H. Cai, S. Hui, J. Alloys. Compd. 640 (2015) 253-259.
DOI URL |
[20] |
C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, W.Q. Wang, J. Alloys. Compd. 550 (2013) 23-30.
DOI URL |
[21] |
O. Ivasishin, P. Markovsky, Y.V. Matviychuk, S.L. Semlatin, C.H. Ward, S. Fox, J. Alloys. Compd. 457 (2008) 296-309.
DOI URL |
[22] |
R.F. Dong, J.S. Li, H.C. Kou, J.K. Fan, Y.H. Zhao, H. Hou, L. Wu, J. Mater. Sci. Technol. 44 (2020) 24-30.
DOI URL |
[23] |
W. Chen, Q. Sun, L. Xiao, J. Sun, Mater. Sci. Eng. A 527 (2010) 7225-7234.
DOI URL |
[24] |
R.F. Dong, J.S. Li, J.K. Fan, H.C. Kou, B. Tang, Mater. Charact. 132 (2017) 199-204.
DOI URL |
[25] | J.K. Fan, J.S. Li, H.C. Kou, K. Hua, B. Tang, J. Miner. Mater. Charact. Eng. 96 (2014) 93-99. |
[26] |
Z. Tarzimoghadam, S. Sandlöbes, K.G. Pradeep, D. Raabe, Acta Mater. 97 (2015) 291-304.
DOI URL |
[27] |
N.P. Gurao, A.A. Ashkar, S. Suwas, Mater. Sci. Eng. A 504 (2009) 24-35.
DOI URL |
[28] |
K. Hua, Y. Zhang, W. Gan, H. Kou, J. Li, C. Esling, Acta Mater. 161 (2018) 150-160.
DOI URL |
[29] |
X. Zhang, H.C. Kou, J.S. Li, F.S. Zhang, L. Zhou, J. Alloys. Compd. 577 (2013) 516-522.
DOI URL |
[30] |
R.F. Dong, J.S. Li, H.C. Kou, J.K. Fan, B. Tang, M. Sun, Mater. Charact. 140 (2018) 275-280.
DOI URL |
[31] |
A. Dehghan-Manshadi, R.J. Dippenaar, Mater. Sci. Eng. A 528 (2011) 1833-1839.
DOI URL |
[32] |
D. Qiu, R. Shi, D. Zhang, W. Lu, Y. Wang, Acta Mater. 88 (2015) 218-231.
DOI URL |
[33] |
R. Shi, Y. Wang, Acta Mater. 61 (2013) 6006-6024.
DOI URL |
[34] |
R. Shi, V. Dixit, H. Fraser, Y. Wang, Acta Mater. 75 (2014) 156-166.
DOI URL |
[35] |
A. Morawiec, J.J. Fundenberger, E. Bouzy, J.S. Lecomte, J. Appl. Crystallogr. 35 (2002), 287-287.
DOI URL |
[36] |
Y.D. Zhang, S.Y. Wang, C. Esling, J.S. Lecomte, C. Schuman, X. Zhao, L. Zuo, J. Appl. Crystallogr. 44 (2011) 1164-1168.
DOI URL |
[37] | Crystal Maker software, http://www.crystalmaker.com/. |
[38] |
K. Hua, Y.D. Zhang, H.C. Kou, J.S. Li, W.M. Gan, J.J. Fundenberger, C. Esling, Acta Mater. 132 (2017) 307-326.
DOI URL |
[39] | D.A. Porter, K.E. Easterling, Phase Transformation in Metals and Alloys (Revised Reprint), Spinger, 2009, pp. 185-265. |
[40] |
Y.C. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 58 (2010) 753-763.
DOI URL |
[41] |
Y. Pang, Q. Li, Int. J. Hydrogen. Energ. 41 (2016) 18072-18087.
DOI URL |
[42] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloy. 7 (2019) 58-71.
DOI URL |
[43] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[44] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[45] |
R. Shi, V. Dixit, G.B. Viswanathan, H.L. Fraser, Y. Wang, Acta Mater. 102 (2016) 197-211.
DOI URL |
[46] |
P. Manda, V. Singh, U. Chakkingal, A.K. Singh, Mater. Charact. 120 (2016) 220-228.
DOI URL |
[47] |
S. Wang, M. Aindow, M. Starink, Acta Mater. 51 (2003) 2485-2503.
DOI URL |
[48] |
S. Van Bohemen, A. Kamp, R. Petrov, L. Kestens, J. Sietsma, Acta Mater. 56 (2008) 5907-5914.
DOI URL |
[49] |
W. Zhu, C. Tan, R. Xiao, Q. Sun, J. Sun, J. Mater. Sci. Technol. 57 (2020) 188-196.
DOI URL |
[50] |
P. Castany, M. Besse, T. Gloriant, Scr. Mater. 66 (2012) 371-373.
DOI URL |
[51] | V. Vitek, Philos. Mag. Abingdon (Abingdon) 84 (2004) 415-428. |
[52] |
J. Li, R. Dong, H. Kou, J. Fan, B. Zhu, B. Tang, Mater. Charact. 159 (2020), 109999.
DOI URL |
[1] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[2] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[3] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[4] | Fusen Yuan, Geping Li, Fuzhou Han, Yingdong Zhang, Ali Muhammad, Wenbin Guo, Jie Ren, Chengze Liu, Hengfei Gu, Gaihuan Yuan. A new type face-centered cubic zirconium phase in pure zirconium [J]. J. Mater. Sci. Technol., 2021, 81(0): 236-239. |
[5] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[6] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
[7] | Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation [J]. J. Mater. Sci. Technol., 2021, 86(0): 117-126. |
[8] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
[9] | Zhufeng He, Nan Jia, Hongwei Wang, Haile Yan, Yongfeng Shen. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86(0): 158-170. |
[10] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[11] | Yingying Zong, Jiwei Wang, Bin Shao, Wei Tang, Debin Shan. Mechanism and morphology evolution of the O phase transformation in Ti-22Al-25Nb alloy [J]. J. Mater. Sci. Technol., 2021, 89(0): 97-106. |
[12] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[13] | Ziyan Zhao, Juan Mu, Haifeng Zhang, Yandong Wang, Yang Ren. Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites [J]. J. Mater. Sci. Technol., 2021, 79(0): 212-221. |
[14] | Jinhu Zhang, Xuexiong Li, Dongsheng Xu, Chunyu Teng, Hao Wang, Liang Yang, Hongtao Ju, Haisheng Xu, Zhichao Meng, Yingjie Ma, Yunzhi Wang, Rui Yang. Phase field simulation of the stress-induced α microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation [J]. J. Mater. Sci. Technol., 2021, 90(0): 168-182. |
[15] | Shuqun Chen, Jinshu Wang, Ronghai Wu, Zheng Wang, Yangzhong Li, Yiwen Lu, Wenyuan Zhou, Peng Hu, Hongyi Li. Insights into the nucleation, grain growth and phase transformation behaviours of sputtered metastable β-W films [J]. J. Mater. Sci. Technol., 2021, 90(0): 66-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||