J. Mater. Sci. Technol. ›› 2021, Vol. 89: 97-106.DOI: 10.1016/j.jmst.2021.01.087
Previous Articles Next Articles
Yingying Zong, Jiwei Wang, Bin Shao*(), Wei Tang, Debin Shan
Received:
2020-09-04
Revised:
2021-01-26
Accepted:
2021-01-28
Published:
2021-10-30
Online:
2021-10-24
Contact:
Bin Shao
About author:
*E-mail address: shaobin@hit.edu.cn (B. Shao).Yingying Zong, Jiwei Wang, Bin Shao, Wei Tang, Debin Shan. Mechanism and morphology evolution of the O phase transformation in Ti-22Al-25Nb alloy[J]. J. Mater. Sci. Technol., 2021, 89: 97-106.
Fig. 2. Original microstructure of the Ti-22Al-25Nb alloy. (a) Distribution and content of the B2 and O phase; (b) O phase morphology; (c) B2 grain orientation.
Fig. 3. Microstructure obtained after holding for 15?min at 930?°C. (a) EBSD image of the phase distribution and local B2 phase orientation distribution; (b) spheroidized O phase and nucleation of the α2 phase; (c) strip O phase; (d)-(f) TEM images of the composition distribution.
Fig. 4. Microstructure obtained after holding for 15?min at 960?°C. (a) O phase distribution inside the B2 grains; (b) O phase orientation distribution inside the B2 grains; (c) α2 phase precipitated inside the spheroidized O phase at the B2 grain boundaries; (d) orientation relationship between the O and α2 phases.
Fig. 5. Composition analysis at the grain boundaries at 930?°C and 960?°C. (a) Scanning electron microscopy (SEM) image of the microstructure at 930?°C; (b) line scan of elements at the grain boundaries of (a); (c) SEM image of the microstructure at 960?°C; (d) line scan of elements at the grain boundaries of (c).
Fig. 6. EBSD image of the microstructure obtained after holding for 15?min at 990?°C during the heating process. (a) Phase distribution; (b) Z-axis inverse pole figure (IPF) map.
Fig. 8. Free energies of formation for the α2 phase and O phase. (a) Free energies of formation for the α2 phase and O phase as a function of the Nb content; (b) difference in the free energies of formation for the α2 phase and O phase as a function of the Nb content.
Fig. 9. Variation in lattice parameters of the α2 phase with increasing Nb content. (a) γ angle; (b) a, b, and c values; (c) crystal cell of the α2 phase when the Nb content is 0%; (d) crystal cell of the α2 phase when the Nb content is 25 %.
Fig. 11. Microstructures in the samples cooled from 1200?°C to different temperatures in the furnace. (a) (d) 1020?°C; (b) (e) 930?°C; (c) (f) room temperature (25?°C).
Fig. 12. Microstructure in the sample cooled from 1200?°C to 930?°C in the furnace. (a) (b) EBSD image of the phase distributed in the blue box in Fig. 11(e); (c) standard Kikuchi patterns of the B2 phase and O phase; (d) Kikuchi patterns at points ①-⑤.
Fig. 13. Microstructures in the samples cooled from 1200?°C to 1020?°C in the furnace, quenched, and held at 960?°C for different time. (a) 15?min; (b) 60?min; (c) partial enlargement of (b).
[1] | J. Wu, R.P. Guo, L. Xu, Z.G. Lu, Y.Y. Cui, R. Yang, , J. Mater. Sci. Technol. 33 (2017) 172-178. |
[2] |
H. Jin, Q. Jia, Q.G. Xian, R.H. Liu, Y.Y. Cui, D.S. Xu, R. Yang, , J. Mater. Sci. Technol. 54 (2020) 190-195.
DOI URL |
[3] | Y.R. Zhang, Y.C. Liu, L.M. Yu, H.Y. Liang, Y. Huang, Z.Q. Ma, Mater. Sci. Eng. A 776 (2020), 139043. |
[4] |
Y.L. Zhang, A.H. Feng, S.J. Qu, J. Shen, D.L. Chen, , J. Mater. Sci. Technol. 44 (2020) 140-147.
DOI URL |
[5] |
C.J. Boehlert, Mater. Sci. Eng. A 279 (2000) 118-129.
DOI URL |
[6] |
J.H. Zhang, J.M. Liu, D.S. Xu, J. Wu, L. Xu, R. Yang, , J. Mater. Sci. Technol. 35 (2019) 2513-2525.
DOI |
[7] |
Y. Wang, X.Q. Cai, Z.W. Yang, D.P. Wang, X.G. Liu, Y.C. Liu, , J. Mater. Sci. Technol. 33 (2017) 682-689.
DOI |
[8] |
S.R. Dey, S. Roy, S. Suwas, J.J. Fundenberger, R.K. Ray, Intermetallics 18 (2010) 1122-1131.
DOI URL |
[9] |
C.J. Cowen, C.J. Boehlert, Intermetallics 14 (2006) 412-422.
DOI URL |
[10] |
H.S. Ren, H.P. Xiong, W.M. Long, B. Chen, Y.X. Shen, S.J. Pang, , J. Mater. Sci. Technol. 35 (2019) 2070-2078.
DOI |
[11] |
Z.C. Luo, H.P. Wang, , J. Mater. Sci. Technol. 40 (2020) 47-53.
DOI |
[12] | Y.H. Zhou, W.P. Li, L. Zhang, S.Y. Zhou, X. Jia, D.W. Wang, M. Yan, J. Mater.Process. Technol. 276 (2020), 116398. |
[13] | J.L. Zhang, J.P. Wu, Y.Y. Luo, X.N. Mao, D.Z. Guo, S.Z. Zhao, F. Yang, J. Mater.Eng. Perform. 28 (2019) 973-980. |
[14] |
H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, L.M. Yu, , J. Mater. Res. 31 (2016) 1764-1772.
DOI URL |
[15] |
B.Y. Li, K.F. Zhang, W. Yao, B.T. Xu, Mater. Charact. 150 (2019) 38-51.
DOI URL |
[16] |
X.Y. Jiao, D.J. Wang, J.L. Yang, Z.Q. Liu, G. Liu, , J. Alloys Compd. 789 (2019) 639-646.
DOI URL |
[17] |
D. Banerjee, Prog. Mater. Sci. 42 (1997) 135-158.
DOI URL |
[18] |
M.C. Li, Q. Cai, Y.C. Liu, Z.Q. Ma, Z.M. Wang, Adv. Eng. Mater. 20 (2018),1700659.
DOI URL |
[19] |
B. Shao, Y.Y. Zong, D.S. Wen, Y.T. Tian, D.B. Shan, Mater. Charact. 114 (2016) 75-78.
DOI URL |
[20] | H.Y. Zhang, C. Li, Z.Q. Ma, L.M. Yu, H.J. Li, Y.C. Liu, Int. J. Miner., Metall. Mater. 25 (2018) 1191-1200. |
[21] |
Q. Cai, M.C. Li, Y.R. Zhang, Y.C. Liu, Z.Q. Ma, C. Li, H.J. Li, Mater. Charact. 145 (2018) 413-422.
DOI URL |
[22] |
Y.P. Zheng, W.D. Zeng, D. Li, H.Y. Ma, P.H. Zhang, X. Ma, , J. Alloys Compd. 799 (2019) 267-278.
DOI URL |
[23] |
H.Y. Zhang, C. Li, Z.Q. Ma, L.M. Yu, Y.C. Liu, Vacuum 164 (2019) 175-180.
DOI URL |
[24] |
Y. Sun, X.Y. Feng, L.X. Hu, H. Zhang, H.Z. Zhang, , J. Alloys Compd. 753 (2018) 256-271.
DOI URL |
[25] |
K.H. Sim, G.F. Wang, T.J. Kim, K.S. Ju, , J. Alloys Compd. 741 (2018) 1112-1120.
DOI URL |
[26] | Y.P. Zheng, W.D. Zeng, D. Li, Q.Y. Zhao, X.B. Liang, J.W. Zhang, X. Ma, J. AlloysCompd. 709 (2017) 511-518. |
[27] |
W. Wang, W.D. Zeng, C. Xue, X.B. Liang, J.W. Zhang, Intermetallics 56 (2015) 79-86.
DOI URL |
[28] |
Y. Huang, Y.C. Liu, C. Li, Z.Q. Ma, L.M. Yu, H.J. Li, Vacuum 161 (2019) 209-219.
DOI |
[29] |
Y. Wu, D.Z. Yang, G.M. Song, Intermetallics 8 (2000) 629-632.
DOI URL |
[30] |
G.D. Ren, J. Sun, Acta Mater. 144 (2018) 516-523.
DOI URL |
[31] |
B. Shao, D.B. Shan, B. Guo, Y.Y. Zong, Int. J. Plast. 113 (2019) 18-34.
DOI URL |
[32] |
Y.Y. Zong, B. Shao, W.C. Xu, B. Guo, D.B. Shan, Sci. Rep. 7 (2017) 1645.
DOI URL |
[33] |
Y. Li, J.H. Dai, Y. Song,, J. Alloys Compd. 818 (2020), 152926.
DOI URL |
[34] |
A. Pathak, A.K. Singh, Solid State Commun. 204 (2015) 9-15.
DOI URL |
[35] |
A.Q. Wang, P. Liu, J.P. Xie, D.Q. Ma, Z.P. Mao,, J. Alloys Compd. 817 (2020),152734.
DOI URL |
[36] |
G.D. Ren, C.R. Dai, W. Mei, J. Sun, S. Lu, L. Vitos, Acta Mater. 165 (2019) 215-227.
DOI URL |
[37] |
W. Wang, W.D. Zeng, D. Li, B. Zhu, Y.P. Zheng, X.B. Liang, Mater. Sci. Eng. A 662 (2016) 120-128.
DOI URL |
[38] | Y.H. Zhou, W.P. Li, D.W. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, M. Yan, ActaMater. 173 (2019) 117-129. |
[39] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[40] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396. |
[41] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
[42] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[43] |
Y.P. Zheng, W.D. Zeng, D. Li, J.W. Xu, X. Ma, X.B. Liang, J.W. Zhang, Mater. Des. 158 (2018) 46-61.
DOI URL |
[1] | Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85(0): 224-234. |
[2] | SeungHyeok Chung, Bin Lee, Soo Yeol Lee, Changwoo Do, Ho Jin Ryu. The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 85(0): 62-75. |
[3] | Qiang Wang, Liangcai Zeng, Tengfei Gao, Hui Du, Xinwang Liu. On the room-temperature tensile deformation behavior of a cast dual-phase high-entropy alloy CrFeCoNiAl0.7 [J]. J. Mater. Sci. Technol., 2021, 87(0): 29-38. |
[4] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
[5] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[6] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[7] | Yongxin Ruan, Changrong Li, Yuping Ren, Xiaopan Wu, R. Schmid-Fetzer, Cuiping Guo, Zhenmin Du. Phases equilibrated with long-period stacking ordered phases in the Mg-rich corner of the Mg-Y-Zn system [J]. J. Mater. Sci. Technol., 2021, 68(0): 147-159. |
[8] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[9] | Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating [J]. J. Mater. Sci. Technol., 2021, 83(0): 145-160. |
[10] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
[11] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
[12] | Guoqiang Ma, Darcy A. Hughes, Andrew W. Godfrey, Qiang Chen, Niels Hansen, Guilin Wu. Microstructure and strength of a tantalum-tungsten alloy after cold rolling from small to large strains [J]. J. Mater. Sci. Technol., 2021, 83(0): 34-48. |
[13] | Shuting Cao, Yaqian Yang, Bo Chen, Kui Liu, Yingche Ma, Leilei Ding, Junjie Shi. Influence of yttrium on purification and carbide precipitation of superalloy K4169 [J]. J. Mater. Sci. Technol., 2021, 86(0): 260-270. |
[14] | Dan Liu, Daoxin Liu, Junfeng Cui, Xingchen Xu, Kaifa Fan, Amin Ma, Yuting He, Sara Bagherifard. Deformation mechanism and in-situ TEM compression behavior of TB8 β titanium alloy with gradient structure [J]. J. Mater. Sci. Technol., 2021, 84(0): 105-115. |
[15] | Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu. A review on carbon/magnetic metal composites for microwave absorption [J]. J. Mater. Sci. Technol., 2021, 86(0): 91-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||