J. Mater. Sci. Technol. ›› 2021, Vol. 89: 107-113.DOI: 10.1016/j.jmst.2021.02.025
Previous Articles Next Articles
Hong-Lei Chena,b, Xue-Mei Luoa,*(
), Dong Wangc, Peter Schaafc, Guang-Ping Zhanga,*(
)
Received:2020-11-16
Revised:2021-01-07
Accepted:2021-02-07
Published:2021-10-30
Online:2021-10-30
Contact:
Xue-Mei Luo,Guang-Ping Zhang
About author:gpzhang@imr.ac.cn(G.-P. Zhang).Hong-Lei Chen, Xue-Mei Luo, Dong Wang, Peter Schaaf, Guang-Ping Zhang. Achieving very high cycle fatigue performance of Au thin films for flexible electronic applications[J]. J. Mater. Sci. Technol., 2021, 89: 107-113.
Fig. 1. (a) Schematic of the cantilever sample geometry. (b) Schematic of the dynamic bending fatigue method to perform the fatigue tests. R is the curvature radius of the bent sample.
Fig. 2. Microstructures of as-deposited films: (a) Au film, TEM cross-sectional view, (b) Au/Ti film, TEM cross-sectional view, (c) In-plane grain size distributions of as-deposited Au and Au/Ti films, (d) HRTEM observation of the Au/Ti interface structure. Different crystallographic planes are indicated by the solid lines. The low angle grain boundary (LAGB) with a misorientation angle ~3° in the Au layer is indicated by the chain-dotted line. The Au/Ti interface is indicated by the dashed line.
Fig. 3. (a) Relation between critical failure strain amplitude (Δεc/2) and the applied loading cycles. Here, the magnitude of the error bars for Δεc/2 in Au and Au/Ti are similar under the same applied loading cycles, but they are compressed in the logarithmic coordinates, especially at larger values at the y-axis, which makes the error bars for the Au/Ti appear smaller in Fig. 3(a). (b) Relative resistance increase (R/R0) versus the applied tensile strain in the Au and Au/Ti films during the uniaxial tensile test. The deviation from the ideal electrical curve indicated by the dashed line correlates with the fracture onset during the test.
Fig. 4. SEM observations of the surface morphology after cyclic loading: (a) Au film after 105 cycles at Δε/2≈0.58 %, (b) Au/Ti film after 105 cycles at Δε/2≈0.61 %, (c) Au film after 108 cycles at Δε/2≈0.28 %, (d) Au/Ti film after 108 cycles at Δε/2≈0.35 %. The slip bands are indicated by the dashed lines. Insets in the right corner in (c) and (d) are close observations of intergranular cracks, respectively. The scale length in the insets is 100 nm.
Fig. 5. EBSD orientation maps of the cracked zones for (a) Au and (b) Au/Ti films after 105 cycles, indicating abnormal grain growth occurred in the cracked area.
Fig. 6. Cross-sectional view of film-substrate interface voids: (a) after 108 cycles in Au film, (b) after 105 cycles in Au/Ti film, (c) after 108 cycles in Au/Ti film. Here, the extrusions with similar width around the location corresponding to the critical strain were chosen to give a reliable comparison.
| [1] |
J.A. Rogers, Z. Bao, , J. Polym. Sci.: Polym. Chem. 40 (2002) 3327-3334.
DOI URL |
| [2] |
M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 499 (2013) 458-463.
DOI URL |
| [3] |
Q. Sun, B. Qian, K. Uto, J. Chen, X. Liu, T. Minari, Biosens. Bioelectron. 119 (2018) 237-251.
DOI URL |
| [4] | X.M. Luo, B. Zhang, G.P. Zhang, Nano Mater. Sci. 1 (2019) 198-207. |
| [5] |
P. Xue, Z. Huang, B. Wang, Y. Tian, W. Wang, B. Xiao, Z. Ma, Sci. China Mater. 59 (2016) 531-537.
DOI URL |
| [6] |
R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, X.H. An, Z.F. Zhang, Acta Mater. 144 (2018) 613-626.
DOI URL |
| [7] |
Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Nature 551 (2017) 214-217.
DOI URL |
| [8] |
J.A. Rogers, T. Someya, Y. Huang, Science 327 (2010) 1603-1607.
DOI PMID |
| [9] | Z. Liu, H. Wang, P. Huang, J. Huang, Y. Zhang, Y. Wang, M. Yu, S. Chen, D. Qi, T. Wang Y. Jiang, G. Chen, G. Hu, W. Li, J. Yu, Y. Luo, X.J. Loh, B. Liedberg, G. Li, X. Chen, Adv. Mater. 31 (2019), e1901360. |
| [10] | Z. Xue, H. Song, J.A. Rogers, Y. Zhang, Y. Huang, Adv. Mater. 32 (2020),e1902254. |
| [11] |
X.M. Luo, G.P. Zhang, Mater. Sci. Eng. A 702 (2017) 81-86.
DOI URL |
| [12] |
X.M. Luo, X.F. Zhu, G.P. Zhang, Nat. Commun. 5 (2014) 3021.
DOI URL |
| [13] |
G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, O. Kraft, Acta Mater. 54 (2006) 3127-3139.
DOI URL |
| [14] |
R. Schwaiger, O. Kraft, Acta Mater. 51 (2003) 195-206.
DOI URL |
| [15] |
V.M. Marx, C. Kirchlechner, I. Zizak, M.J. Cordill, G. Dehm, Philos. Mag. 95 (2014) 1982-1991.
DOI URL |
| [16] |
T.K. Schmidt, T.J. Balk, G. Dehm, E. Arzt, Scr. Mater. 50 (2004) 733-737.
DOI URL |
| [17] |
N. Lu, Z. Suo, J.J. Vlassak, Acta Mater. 58 (2010) 1679-1687.
DOI URL |
| [18] |
T. Li, Z. Suo, Int. J. Solids Struct. 44 (2007) 1696-1705.
DOI URL |
| [19] |
Y. Xiang, T. Li, Z. Suo, J.J. Vlassak, Appl. Phys. Lett. 87 (2005), 161910.
DOI URL |
| [20] |
N. Lu, X. Wang, Z. Suo, J. Vlassak, Appl. Phys. Lett. 91 (2007), 221909.
DOI URL |
| [21] |
D. Wang, P.A. Gruber, C.A. Volkert, O. Kraft, Mat. Sci. Eng. A 610 (2014) 33-38.
DOI URL |
| [22] |
M.J. Cordill, O. Glushko, A. Kleinbichler, B. Putz, D.M. Többens, C. Kirchlechner, Thin Solid Films 644 (2017) 166-172.
DOI URL |
| [23] |
B. Putz, R.L. Schoeppner, O. Glushko, D.F. Bahr, M.J. Cordill, Scr. Mater. 102 (2015) 23-26.
DOI URL |
| [24] |
S.X. Zheng, X.M. Luo, G.P. Zhang, , J. Mater. Res. 35 (2020) 372-379.
DOI URL |
| [25] | Y. Bai, B. Yang, F. Guo, Q. Lu, S. Zhao, Nanotechnology 28 (2017), 455705. |
| [26] | S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, NewYork, 1998. |
| [27] |
X.M. Luo, G.P. Zhang, , J. Mater. Res. 32 (2017) 3516-3523.
DOI URL |
| [28] |
T. Li, Z.Y. Huang, Z.C. Xi, S.P. Lacour, S. Wagner, Z. Suo, Mech. Mater. 37 (2005) 261-273.
DOI URL |
| [29] |
R. Schwaiger, O. Kraft, Scr. Mater. 41 (1999) 823-829.
DOI URL |
| [30] |
R. Schwaiger, G. Dehm, O. Kraft, Philos. Mag. 83 (2003) 693-710.
DOI URL |
| [31] |
G.-D. Sim, Y.-S. Lee, S.-B. Lee, J.J. Vlassak, Mater. Sci. Eng. A 575 (2013) 86-93.
DOI URL |
| [32] |
S. Eve, N. Huber, A. Last, O. Kraft, Thin Solid Films 517 (2009) 2702-2707.
DOI URL |
| [33] |
G.-D. Sim, Y.Hwangbo, H.-H. Kim, S.-B. Lee, J.J. Vlassakb, Scr. Mater. 66 (2012) 915-918.
DOI URL |
| [34] | O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Z. Metallkd. 93 (2002) 392-400. |
| [35] |
Q.M. Wei, N. Li, N. Mara, M. Nastasi, A. Misra, Acta Mater. 59 (2011) 6331-6340.
DOI URL |
| [36] |
W.Z. Han, M.J. Demkowicz, E.G. Fu, Y.Q. Wang, A. Misra, Acta Mater. 60 (2012) 6341-6351.
DOI URL |
| [37] |
I.J. Beyerlein, M.J. Demkowicz, A. Misra, B.P. Uberuaga, Prog. Mater. Sci. 74 (2015) 125-210.
DOI URL |
| [38] |
W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J. S.Carpenter I.J. Beyerlein, A. Misra, Adv. Mater. 25 (2013) 6975-6979.
DOI URL |
| [39] |
S. Mao, S. Shu, J. Zhou, R.S. Averback, S.J. Dillon, Acta Mater. 82 (2015) 328-335.
DOI URL |
| [40] |
J. Polák, M. Sauzay, Mater. Sci. Eng. A 500 (2009) 122-129.
DOI URL |
| [41] |
J. Wang, R.G. Hoagland, A. Misra, Appl. Phys. Lett. 94 (2009), 131910.
DOI URL |
| [42] |
J. Polák, J. Man, Int. J. Fatigue 65 (2014) 18-27.
DOI URL |
| [43] | U. Essmann, U. Gosele, H. Mughrabi, Philos. Mag. 44 (1981) 405-426. |
| [44] |
H. Mughrabi, Metall. Mater. Trans. B 40 (2009) 431-453.
DOI URL |
| [45] |
S. Gupta, A. Barrios, N. England, O.N. Pierron, Acta Mater. 161 (2018) 444-455.
DOI URL |
| [46] | H.L. Chen, University of Science and Technology of China, 2021. |
| [47] |
A.C. Chng, M.P.O’Day, W.A. Curtin, A.A.O. Tay, K.M. Lim, Acta Mater. 54 (2006) 1017-1027.
DOI URL |
| [48] |
M. Lane, Ann. Rev. Mater. Res. 33 (2003) 29-54.
DOI URL |
| [49] |
C.V. Thompson, , J. Mater. Res. 8 (1992) 237-238.
DOI URL |
| [50] |
P.A. Gruber, J. Böhm, F. Onuseit, A. Wanner, R. Spolenak, E. Arzt, Acta Mater. 56 (2008) 2318-2335.
DOI URL |
| [51] |
W.W. Gerberich, M.J. Cordill, Rep. Prog. Phys. 69 (2006) 2157-2203.
DOI URL |
| [52] |
V.S. Deshpande, A. Needleman, E. Van der Giessen, Acta Mater. 51 (2003) 4637-4651.
DOI URL |
| [1] | Dan Liu, Daoxin Liu, Mario Guagliano, Xingchen Xu, Kaifa Fan, Sara Bagherifard. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure [J]. J. Mater. Sci. Technol., 2021, 61(0): 63-74. |
| [2] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
| [3] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
| [4] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
| [5] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
| [6] | Peixing Chen, Sixiang Wang, Zhi Huang, Yan Gao, Yu Zhang, Chunli Wang, Tingting Xia, Linhao Li, Wanqian Liu, Li Yang. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration [J]. J. Mater. Sci. Technol., 2021, 70(0): 91-104. |
| [7] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
| [8] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
| [9] | Xirui Lv, Mengkun Yue, Wenfan Yang, Xue Feng, Xiaoyan Li, Yumin Wang, Jiemin Wang, Jie Zhang, Jingyang Wang. Tunable strength of SiCf/β-Yb2Si2O7 interface for different requirements in SiCf/SiC CMC: Inspiration from model composite investigation [J]. J. Mater. Sci. Technol., 2021, 67(0): 165-173. |
| [10] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
| [11] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
| [12] | Baijie Song, Shuanghao Wu, Hao Yan, Kun Zhu, Liuxue Xu, Bo Shen, Jiwei Zhai. Fatigue-less relaxor ferroelectric thin films with high energy storage density via defect engineer [J]. J. Mater. Sci. Technol., 2021, 77(0): 178-186. |
| [13] | Chengqi Sun, Yanqing Li, Kuilong Xu, Baotong Xu. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77(0): 223-236. |
| [14] | Wenyan Luo, Yunzhong Liu, Cheng Tu. Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate [J]. J. Mater. Sci. Technol., 2021, 78(0): 192-201. |
| [15] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes [J]. J. Mater. Sci. Technol., 2021, 85(0): 158-168. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
