J. Mater. Sci. Technol. ›› 2021, Vol. 89: 114-121.DOI: 10.1016/j.jmst.2021.02.026
Previous Articles Next Articles
Huimin Xiang, Fuzhi Dai, Yanchun Zhou*(
)
Received:2020-12-21
Revised:2021-01-25
Accepted:2021-02-07
Published:2021-10-30
Online:2021-10-30
Contact:
Yanchun Zhou
About author:*E-mail address: yczhou@alum.imr.ac.cn (Y. Zhou).Huimin Xiang, Fuzhi Dai, Yanchun Zhou. Secrets of high thermal emission of transition metal disilicides TMSi2 (TM = Ta, Mo)[J]. J. Mater. Sci. Technol., 2021, 89: 114-121.
Fig. 1. (a) Crystal structure of MoSi2 and TaSi2, (b) theoretical electronic structure of TaSi2 with (dash lines) and without (solid lines) the GW correction.
| ωD | ωDxx | ωDzz | η300 K | ε300 K | ε1400 K | ε1600 K | ε1800 K | |
|---|---|---|---|---|---|---|---|---|
| TaSi2 | 3.45 | 3.17 | 4.00 | 615 | 0.20 | 0.37 | 0.41 | 0.41 |
| MoSi2 | 2.45 | 2.27 | 2.82 | 259 | 0.17 | 0.51 | 0.52 | 0.52 |
Table 1 Theoretical predictions on the anisotropic Drude plasma frequency (ωD in eV), damping constant (η?in meV) and integrated thermal emittance (ε) of two silicides.
| ωD | ωDxx | ωDzz | η300 K | ε300 K | ε1400 K | ε1600 K | ε1800 K | |
|---|---|---|---|---|---|---|---|---|
| TaSi2 | 3.45 | 3.17 | 4.00 | 615 | 0.20 | 0.37 | 0.41 | 0.41 |
| MoSi2 | 2.45 | 2.27 | 2.82 | 259 | 0.17 | 0.51 | 0.52 | 0.52 |
Fig. 2. Theoretical reflectivity spectrum of (a) TaSi2, and (b) MoSi2. Experimental results (green triangles, green squares, and blue hexagons) from Refs. [[18], [19], [20]] are also included.
Fig. 4. (a) Two simplified models of two typical application scenarios of TMSi2, simulated integrated emittance of model A for (b) TaSi2 and (c) MoSi2, and (d) simulated reflectance spectrum of model A for MoSi2 with different thickness of SiO2 surface layer.
Fig. 5. (a) Simulated integrated emittance of model B for TaSi2 and MoSi2, and (b) reflectance spectrum of model B for MoSi2 with different content of SiO2 in the composites.
| [1] | W. Hale, H. Lane, G. Chapline, K. Lulla, Wings in Orbit: Scientific andEngineering Legacies of the Space Shuttle, 1971-2010, NASA Tech Report,NASA/SP-2010-3409, 2011. |
| [2] |
D. Sziroczak, H. Smith, Prog. Aero. Sci. 84 (2016) 1-28.
DOI URL |
| [3] |
B. Behrens, M. Muller, Acta Astronaut. 55 (2004) 529-536.
DOI URL |
| [4] |
O. Uyanna, H. Najaf, Acta Astronaut. 176 (2020) 341-356.
DOI URL |
| [5] | J.D. Anderson, NewYork, 2010. |
| [6] |
D.B. Leiser, R. Churchward, V. Katvala, D. Stewart, , J. Am. Ceram. Soc. 72 (1989) 1003-1010.
DOI URL |
| [7] | S.M. Johnson, Coatings and Surface Treatments for Reusable Entry Systems,NASA Tech Report, ARC-E-DAA-TN30202,2016. |
| [8] | J. Cleland, F. Iannetti, Thermal Protection System of the Space Shuttle, NASATech Report, NASA-CR-4227,1989. |
| [9] |
T.E. Steyer, Int. J. Appl. Ceram. Technol. 10 (2013) 389-394.
DOI URL |
| [10] | A.P. Mourtiz, Introduction to Aerospace Materials, Woodhead Publishing, Reston, VA, 2012. |
| [11] | J.C. Fletcher, Reaction cured glass and glass coatings, U. S. patent. 4,093, 771,1978. |
| [12] | D.B. Leiser, Toughened uni-piece fibrous insulation, U. S. patent. 5,079, 082,1992. |
| [13] | D.A. Stewart, High efficiency tantalum-based ceramic composite structures,U.S. patent. 7,767, 305, 2010. |
| [14] |
G. Shao, X. Wu, Y. Kong, S. Cui, X. Shen, C. Jiao, J. Jiao, Surf. Coat. Technol. 270 (2015) 154-163.
DOI URL |
| [15] |
X. Tao, X. Xu, L. Guo, W. Hong, A. Guo, F. Hou, J. Liu, Mater. Des. 103 (2016) 144-151.
DOI URL |
| [16] | J. Schlichting, High Temp. High Press. 10 (1978) 241-269. |
| [17] |
P. Ged, R. Madar, J.P. Senateur, Phys. Rev. B 29 (1984) 6981-6984.
DOI URL |
| [18] |
W. Henrion, G. Beddxes, H. Lange, Phys. State Solid (b) 131 (1985) K55-K58.
DOI URL |
| [19] | A. Borghesi, L. Nosenzo, A. Piaggi, G. Guizzetti, C. Nobili, G. Ottaviani, Phys.Rev. B 38 (1988) 10937-10940. |
| [20] |
F. Ferrieu, C. Viguier, A. Cros, A. Humbert, O. Thomas, R. Madar, J.P. Senateur, Solid State Commun. 62 (1987) 455-459.
DOI URL |
| [21] |
F. Nava, K.N. Tu, O. Thomas, J.P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, Mater. Sci. Rep. 9 (1993) 141-200.
DOI URL |
| [22] | M. Razeghi, Fundamentals of Solid State Engineering, Springer, USA, 2019. |
| [23] | P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, et al., J. Phys.Condens. Matter 29 (2017), 465901. |
| [24] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
| [25] |
D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43 (1979) 1494-1497.
DOI URL |
| [26] | D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri, E. Cannuccia, et al., J.Phys. Condens. Matter 31 (2019), 325902. |
| [27] | J. Harl, G. Kresse, L.D. Sun, M. Hohage, P. Zeppenfeld, Phys. Rev. B 76 (2007),035436. |
| [28] |
G. Prandini, M. Galante, N. Marzari, P. Umari, Comp. Phys. Commun. 240 (2019) 106-119.
DOI URL |
| [29] | G.D. Mahan, Many-particle Physics, Springer Science & Business Media, 2013. |
| [30] |
G.K.H.Madsen, D.J. Singh, Comput. Phys. Commun. 175 (2006) 67-71.
DOI URL |
| [31] |
Y. Qian, H. Zhang, C. Hong, X. Zhang, J. Phys. D 42 (2009) 105413.
DOI URL |
| [32] | S. Itoh, Mater. Sic. Eng. B6 (1990) 37-41. |
| [33] |
J. Chen, X. Zhang, D. Li, C. Liu, H. Ma, C. Ying, F. Wang, Ceram. Int. 46 (2020) 4595-4601.
DOI URL |
| [34] |
V.N. Antonov, Vl.N. Antonov, O. Jepsen, O.K. Andersen, A. Borghesi, C. Bosio, F. Marabelli A. Piaggi, G. Guizzetti, F. Nava, Phys. Rev. B 44 (1991) 8437-8445.
PMID |
| [35] |
J.D. Cotton, Y.S. Kim, M.J. Kaufman, Mater. Sci. Eng. A 144 (1991) 287-291.
DOI URL |
| [36] | A. Humbert, A. Cros, J. Phys. (Paris)Lett. 44 (1983), L-929. |
| [37] | E. Sani, L. Mercatelli, D. Jafrancesco, J.L. Sans, D. Sciti, , J. Europ. Opt. Soc. Rap.Public. 7 (2012) 12052. |
| [38] |
P.B. Allen, Phys. Rev. B 17 (1978) 3725-3734.
DOI URL |
| [39] |
Y.Q. Liu, G. Shao, P. Tsakiropoulos, Intermetallics. 9 (2001) 125-136.
DOI URL |
| [40] | G. Reisel, B. Wielage, S. Steinhäuser, I. Morgenthal, R. Scholl, Surf. Coat.Technol. 146 (2001) 19-26. |
| [41] |
E. Centuroni, Appl. Opt. 44 (2005) 7532-7539.
DOI URL |
| [42] |
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, W. T.Masselink , Appl. Opt. 51 (2012) 6789-6798.
DOI PMID |
| [43] |
Z. Wang, Y. Hu, H. Lu, F. Yu, J. Non-cryst. Solids 354 (2008) 1128-1132.
DOI URL |
| [44] |
K. Kurokawa, A. Yamauchi, Solid State Phenom. 127 (2007) 227-232.
DOI URL |
| [45] | C. Kennedy, Review of Mid-to High-temperature Solar Selective AbsorberMaterials, Report No. NREL/TP-520-32167, 2002. |
| [1] | G.W. Jung, K. Park. Effect of monovalent charge compensators on the photoluminescence properties of Ca3(PO4)2:Tb3+, A+ (A = Li, Na, K) phosphors [J]. J. Mater. Sci. Technol., 2021, 82(0): 187-196. |
| [2] | Bin Liu, Juanli Zhao, Yuchen Liu, Jianqi Xi, Qian Li, Huimin Xiang, Yanchun Zhou. Application of high-throughput first-principles calculations in ceramic innovation [J]. J. Mater. Sci. Technol., 2021, 88(0): 143-157. |
| [3] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
| [4] | Zhe Xue, Xinyu Zhang, Jiaqian Qin, Mingzhen Ma, Riping Liu. Controlling the strength of Zr (10 $\bar{1}$ 2) grain boundary by nonmetallic impurities doping: A DFT study [J]. J. Mater. Sci. Technol., 2020, 36(0): 140-148. |
| [5] | Elham Gharibshahi, Brandon D. Young, Amar S. Bhalla, Ruyan Guo. Theory, simulation and experiment of optical properties of cobalt ferrite (CoFe2O4) nanoparticles [J]. J. Mater. Sci. Technol., 2020, 57(0): 180-187. |
| [6] | Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure [J]. J. Mater. Sci. Technol., 2020, 44(0): 133-139. |
| [7] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
| [8] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
| [9] | Lu Han, Honghua Fang, Chunmiao Du, Jianxia Sun, Youyong Li, Wanli Ma. Synthesis of ultra-narrow PbTe nanorods with extremely strong quantum confinement [J]. J. Mater. Sci. Technol., 2019, 35(5): 703-710. |
| [10] | Liu Linghong, Chen Jianghua, Fan Touwen, Shang Shunli, Shao Qinqin, Yuan Dingwang, Dai Yu. The stability of deformation twins in aluminum enhanced by alloying elements [J]. J. Mater. Sci. Technol., 2019, 35(11): 2625-2629. |
| [11] | Anil K.Battu, Nanthakishore Makeswaran, C.V. Raman. Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2734-2741. |
| [12] | Yanchun Zhou, Huimin Xiang, Fu-Zhi Dai, Zhihai Feng. Cr5Si3B and Hf5Si3B: New MAB phases with anisotropic electrical, mechanical properties and damage tolerance [J]. J. Mater. Sci. Technol., 2018, 34(8): 1441-1448. |
| [13] | Yanli Lu, Fang Liu, Xiang Li, Feng Gao, Zheng Chen. First-Principles Study on the Stability and Electronic Properties of Bi-Doped Sr3Ti2O7 [J]. J. Mater. Sci. Technol., 2018, 34(5): 891-898. |
| [14] | Weiliang Chen, Xueyong Ding, Yuchao Feng, Xiongjun Liu, Kui Liu, Z.P. Lu, Dianzhong Li, Yiyi Li, C.T. Liu, Xing-Qiu Chen. Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance [J]. J. Mater. Sci. Technol., 2018, 34(2): 355-364. |
| [15] | Jie Du, Rong Yang, Changqing Fang, Xing Zhou, Shaofei Pan, Wanqing Lei, Jian Su, Youliang Cheng, Donghong Liu. Preparation and characterization of organic pigments and their fluorescence properties depending on bulk structure [J]. J. Mater. Sci. Technol., 2018, 34(11): 2218-2224. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
