J. Mater. Sci. Technol. ›› 2021, Vol. 82: 187-196.DOI: 10.1016/j.jmst.2020.11.065
• Research Article • Previous Articles Next Articles
Received:
2020-07-09
Revised:
2020-10-11
Accepted:
2020-11-25
Published:
2021-01-16
Online:
2021-01-16
Contact:
K. Park
About author:
∗ E-mail address: kspark@sejong.ac.kr (K. Park).G.W. Jung, K. Park. Effect of monovalent charge compensators on the photoluminescence properties of Ca3(PO4)2:Tb3+, A+ (A = Li, Na, K) phosphors[J]. J. Mater. Sci. Technol., 2021, 82: 187-196.
Fig. 2. (a) Excitation spectra of Ca3-x(PO4)2:xTb3+ (0.2 ≤ x ≤ 0.4) phosphors monitored at 545?nm. Emission spectra of Ca3-x(PO4)2:xTb3+ (0.2 ≤ x ≤ 0.4) phosphors under (b) 234?nm and (c) 371?nm excitations. (d) Emission intensity from the 5D3 → 7F5 and 5D4 → 7F5 transitions for Ca3-x(PO4)2:xTb3+ (0.2 ≤ x ≤ 0.4) phosphors under 234?nm excitation.
Sample | FWHM (°) | |
---|---|---|
Ca2.65(PO4)2:0.35Tb3+ phosphors | 0.144 | |
Ca2.3(PO4)2:0.35Tb3+, 0.35A+ phosphors | A = Li | 0.134 |
A = Na | 0.135 | |
A = K | 0.137 |
Table 1 FWHM of the (0 2 10) XRD peak for Ca2.65(PO4)2:0.35Tb3+ and Ca2.3(PO4)2:0.35Tb3+, 0.35A+ (A =?Li, Na, K) phosphors.
Sample | FWHM (°) | |
---|---|---|
Ca2.65(PO4)2:0.35Tb3+ phosphors | 0.144 | |
Ca2.3(PO4)2:0.35Tb3+, 0.35A+ phosphors | A = Li | 0.134 |
A = Na | 0.135 | |
A = K | 0.137 |
Fig. 5. (a) Observed and calculated XRD patterns of Ca2.3(PO4)2:0.35Tb3+, 0.385Li+ phosphor. (b) Crystal structure of Ca2.3(PO4)2:0.35Tb3+, 0.385Li+ phosphor drawn using the obtained Rietveld refinement data.
Crystal structure | Rhombohedral |
---|---|
Space group | R3c |
Lattice parameters | |
a (Å) | 10.3852 |
b (Å) | 10.3852 |
c (Å) | 37.1059 |
α = β (°) | 90 |
γ (°) | 120 |
Volume (Å3) | 3465.7987 |
Reliability factors | |
Rwp (%) | 8.52 |
Rexp (%) | 4.05 |
χ2 | 4.43 |
Table 2 Crystallographic data and reliability factors of Ca2.3(PO4)2:0.35Tb3+, 0.385Li+ phosphor.
Crystal structure | Rhombohedral |
---|---|
Space group | R3c |
Lattice parameters | |
a (Å) | 10.3852 |
b (Å) | 10.3852 |
c (Å) | 37.1059 |
α = β (°) | 90 |
γ (°) | 120 |
Volume (Å3) | 3465.7987 |
Reliability factors | |
Rwp (%) | 8.52 |
Rexp (%) | 4.05 |
χ2 | 4.43 |
Atom | Atomic coordinates | Isotropic thermal parameter Biso (Å2) | Occupancy | |||
---|---|---|---|---|---|---|
Site | x | y | z | |||
Ca(1) | 18b | 0.7247 | 0.8536 | 0.1675 | 0.4512 | 0.8192 |
Tb(1) | 18b | 0.7247 | 0.8536 | 0.1675 | 0.4512 | 0.1808 |
Ca(2) | 18b | 0.6214 | 0.8160 | -0.0343 | 1.1535 | 0.8367 |
Tb(2) | 18b | 0.6214 | 0.8160 | -0.0343 | 1.1535 | 0.1633 |
Ca(3) | 18b | 0.7246 | 0.8472 | 0.0614 | 0.5066 | 0.9797 |
Tb(3) | 18b | 0.7246 | 0.8472 | 0.0614 | 0.5066 | 0.0203 |
Ca(4) | 6a | 0.0000 | 0.0000 | -0.0567 | 0.6176 | 0.0286 |
Li(1) | 6a | 0.0000 | 0.0000 | -0.0567 | 0.6176 | 0.1936 |
Ca(5) | 6a | 0.0000 | 0.0000 | 0.7356 | 0.4466 | 0.1165 |
Li(2) | 6a | 0.0000 | 0.0000 | 0.7356 | 0.4466 | 0.2169 |
P(1) | 6a | 0.0000 | 0.0000 | 0.0000 | 0.1444 | 0.3333 |
P(2) | 18b | 0.6852 | 0.8583 | 0.8689 | 0.9214 | 1.0000 |
P(3) | 18b | 0.6475 | 0.8539 | 0.7668 | 0.7165 | 1.0000 |
O(1) | 18b | 0.7324 | -0.1041 | -0.0929 | 2.5060 | 1.0000 |
O(2) | 18b | 0.7587 | 0.7641 | 0.8585 | 0.2693 | 1.0000 |
O(3) | 18b | 0.7337 | 0.0077 | 0.8499 | 0.1881 | 1.0000 |
O(4) | 18b | 0.5127 | 0.7600 | 0.8640 | 2.4770 | 1.0000 |
O(5) | 18b | 0.6019 | -0.0453 | 0.7822 | 0.2364 | 1.0000 |
O(6) | 18b | 0.5844 | 0.6945 | 0.7808 | 0.2097 | 1.0000 |
O(7) | 18b | 0.0984 | 0.9119 | 0.7771 | 1.2677 | 1.0000 |
O(8) | 18b | 0.6226 | 0.8266 | 0.7273 | 2.5776 | 1.0000 |
O(9) | 18b | 0.0088 | 0.8604 | -0.0112 | 2.3972 | 1.0000 |
O(10) | 6a | 0.0000 | 0.0000 | 0.0404 | 1.7667 | 0.3333 |
Table 3 Atomic coordinate, isotropic thermal parameter (Biso), and occupancy of Ca2.3(PO4)2:0.35Tb3+, 0.385Li+ phosphor obtained from the XRD Rietveld refinement.
Atom | Atomic coordinates | Isotropic thermal parameter Biso (Å2) | Occupancy | |||
---|---|---|---|---|---|---|
Site | x | y | z | |||
Ca(1) | 18b | 0.7247 | 0.8536 | 0.1675 | 0.4512 | 0.8192 |
Tb(1) | 18b | 0.7247 | 0.8536 | 0.1675 | 0.4512 | 0.1808 |
Ca(2) | 18b | 0.6214 | 0.8160 | -0.0343 | 1.1535 | 0.8367 |
Tb(2) | 18b | 0.6214 | 0.8160 | -0.0343 | 1.1535 | 0.1633 |
Ca(3) | 18b | 0.7246 | 0.8472 | 0.0614 | 0.5066 | 0.9797 |
Tb(3) | 18b | 0.7246 | 0.8472 | 0.0614 | 0.5066 | 0.0203 |
Ca(4) | 6a | 0.0000 | 0.0000 | -0.0567 | 0.6176 | 0.0286 |
Li(1) | 6a | 0.0000 | 0.0000 | -0.0567 | 0.6176 | 0.1936 |
Ca(5) | 6a | 0.0000 | 0.0000 | 0.7356 | 0.4466 | 0.1165 |
Li(2) | 6a | 0.0000 | 0.0000 | 0.7356 | 0.4466 | 0.2169 |
P(1) | 6a | 0.0000 | 0.0000 | 0.0000 | 0.1444 | 0.3333 |
P(2) | 18b | 0.6852 | 0.8583 | 0.8689 | 0.9214 | 1.0000 |
P(3) | 18b | 0.6475 | 0.8539 | 0.7668 | 0.7165 | 1.0000 |
O(1) | 18b | 0.7324 | -0.1041 | -0.0929 | 2.5060 | 1.0000 |
O(2) | 18b | 0.7587 | 0.7641 | 0.8585 | 0.2693 | 1.0000 |
O(3) | 18b | 0.7337 | 0.0077 | 0.8499 | 0.1881 | 1.0000 |
O(4) | 18b | 0.5127 | 0.7600 | 0.8640 | 2.4770 | 1.0000 |
O(5) | 18b | 0.6019 | -0.0453 | 0.7822 | 0.2364 | 1.0000 |
O(6) | 18b | 0.5844 | 0.6945 | 0.7808 | 0.2097 | 1.0000 |
O(7) | 18b | 0.0984 | 0.9119 | 0.7771 | 1.2677 | 1.0000 |
O(8) | 18b | 0.6226 | 0.8266 | 0.7273 | 2.5776 | 1.0000 |
O(9) | 18b | 0.0088 | 0.8604 | -0.0112 | 2.3972 | 1.0000 |
O(10) | 6a | 0.0000 | 0.0000 | 0.0404 | 1.7667 | 0.3333 |
Fig. 6. Excitation spectra of (a) Ca2.3(PO4)2:0.35Tb3+, 0.35A+ (A = Li, Na, K) and (b) Ca2.3(PO4)2:0.35Tb3+, yLi+ (0.35 ≤ y ≤ 0.455) phosphors monitored at 545?nm. Emission spectra of (c) Ca2.3(PO4)2:0.35Tb3+, 0.35A+ (A = Li, Na, K) and (d) Ca2.3(PO4)2:0.35Tb3+, yLi+ (0.35 ≤ y ≤ 0.455) phosphors under 234?nm excitation. Emission intensities from the 5D4 → 7F5 (545?nm, green) and 5D3 → 7F5 (415?nm, blue) transitions for (e) Ca2.3(PO4)2:0.35Tb3+, 0.35A+ (A = Li, Na, K) and (f) Ca2.3(PO4)2:0.35Tb3+, yLi+ (0.35 ≤ y ≤ 0.455) phosphors. Note that “none” in (a)-(e) corresponds to Ca2.65(PO4)2:0.35Tb3+ phosphor.
Fig. 7. CIE chromaticity diagrams of (a) Ca2.65(PO4)2:0.35Tb3+( ) and Ca2.3(PO4)2:0.35Tb3+, 0.35A+ (A?=?Li( ), Na( ), and K( )) phosphors and of (b) Ca2.65(PO4)2:0.35Tb3+( ) and Ca2.3(PO4)2:0.35Tb3+, yLi+ (y?=?0.35( ), 0.385( ), 0.42( ), and 0.455( )) phosphors under 234?nm excitation.
[1] |
Y. Huang, W. Kai, K. Jang, H.S. Lee, X. Wang, Y. Zhang, D. Qin, C. Jiang, Mater. Lett. 62 (2008) 1913-1915.
DOI URL |
[2] |
C.C. Lin, Z.R. Xiao, G.Y. Guo, T.S. Chan, R.S. Liu, J. Am. Chem. Soc. 132 (2010) 3020-3028.
DOI URL |
[3] |
P.C.Sousa Filho, O.A. Serra, J. Lumin. 129 (2009) 1664-1668.
DOI URL |
[4] |
X.G. Zhang, L.Y. Zhou, M.L. Gong, Opt. Mater. 35 (2013) 993-997.
DOI URL |
[5] |
Y.Q. Li, H. Yu, D.G. Deng, Y.J. Hua, S.L. Zhao, G.H. Jia, H.P. Wang, L.H. Huang, Y.Y. Li, C.X. Li, S.Q. Xu, J. Solid State Chem. 199 (2013) 248-252.
DOI URL |
[6] |
J. Zhang, Y.H. Wang, L.N. Guo, F. Zhang, Y. Wen, B.T. Liu, Y. Huang, J. Solid State Chem. 184 (2011) 2178-2183.
DOI URL |
[7] |
A.I. Orlova, S.N. Pleskova, N.V. Malanina, A.N. Shushunov, E.N. Gorshkova, E.E. Pdovkina, O.N. Gorshkov, Inorg. Mater. 49 (2013) 696-700.
DOI URL |
[8] |
I.M. Nagpure, Shreyas S. Pitale, E. Coetsee, O.M. Ntwaeaborwa, J.J. Terblans, H.C. Swart, Opt. Mater. 34 (2012) 1398-1405.
DOI URL |
[9] |
B.I. Lazoryak, V.A. Morozov, A.A. Belik, S.S. Khasanov, V.Sh. Shekhtman, J. Solid State Chem. 122 (1996) 15-21.
DOI URL |
[10] | J. Qiao, J. Zhao, Z. Xia, Opt. Mater.: X 1 (2019), 100019. |
[11] |
K. Park, D.A. Hakeem, J.W. Pi, G.W. Jung, J. Alloys Compd. 772 (2019) 1040-1051.
DOI URL |
[12] | K. Park, D.A. Hakeem, D.H. Kim, G.W. Jung, S.W. Kim, Scr. Meter. 179 (2020) 92-98. |
[13] |
D.A. Hakeem, J.W. Pi, S.W. Kim, K. Park, Inorg. Chem. Front. 5 (2018) 1336-1345.
DOI URL |
[14] |
D.A. Hakeem, J.W. Pi, G.W. Jung, S.W. Kim, K. Park, Dyes Pigm. 160 (2019) 234-242.
DOI URL |
[15] |
X. Zhou, X. Wang, Luminescence 29 (2013) 143-146.
DOI URL |
[16] |
K. Mizuguchi, Y. Fukuda, Radiat. Prot. Dosim. 84 (1999) 301-306.
DOI URL |
[17] |
K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, J. Lin, Dalton Trans. 44 (2015) 4683-4692.
DOI URL |
[18] |
R.K. Verma, K. Kumar, S.B. Rai, Solid State Sci. 12 (2010) 1146-1151.
DOI URL |
[19] |
J.Y. Sun, J.L. Lai, J.C. Zhu, Z.G. Xia, H.Y. Du, Ceram. Int. 38 (2012) 5341-5345.
DOI URL |
[20] |
X. Li, Z. Yang, L. Guan, J. Guo, Y. Wang, Q. Guo, J. Alloys Compd. 478 (2009) 684-686.
DOI URL |
[21] |
S. Shi, J. Gao, J. Zhou, Opt. Mater. 30 (2008) 1616-1620.
DOI URL |
[22] |
J. Liu, H. Lian, C. Shi, Opt. Mater. 29 (2007) 1591-1594.
DOI URL |
[23] |
D.D. Xu, W. Zhou, Z. Zhang, S.J. Li, X.R. Wang, Opt. Mater. 89 (2019) 197-202.
DOI URL |
[24] |
E. Antolini, Phys. Status Solidi A 173 (1999) 357-364.
DOI URL |
[25] |
I. Veljkovi´c, D. Poleti, L. Karanovi´c, M. Zduji´c, G. Brankovi´c, Sci. Sinter. 43 (2011) 343-351.
DOI URL |
[26] |
E. Antolini, Ceram. Int. 27 (2001) 675-679.
DOI URL |
[27] |
J. Park, D.H. Kim, S.J. Park, T.G. Lee, M. Im, J.S. Kim, S. Nahm, J. Am. Ceram. Soc. 99 (2016) 2229-2232.
DOI URL |
[28] | M.C. Pearce, V. Thangadurai, Asia-Pac. J.Chem. Eng. 4 (2009) 33-44. |
[29] |
M. Zhang, Y. Liang, S. Xu, Y. Zhu, X. Wu, S. Liu, CrystEngComm 18 (2016) 68-76.
DOI URL |
[30] |
S. Dutta, S. Som, S.K. Sharm, RSC Adv. 5 (2015) 7380-7387.
DOI URL |
[31] |
P.M.C. Torres, J. C.C.Abrantes, A. Kaushal, S. Pina, N. Döbelin, M. Bohner, J.M.F. Ferreira, J. Eur. Ceram. Soc. 36 (2016) 817-827.
DOI URL |
[32] | JCPDS No. 23-1418. |
[33] | JCPDS No. 46-1331. |
[34] |
J.Y. Park, H.C. Jung, G.S.R. Raju, B.K. Moon, J.H. Jeong, J.H. Kim, J. Lumin. 130 (2010) 478-482.
DOI URL |
[35] |
D.T. Lien, D.T.M. Houng, L.V. Vu, N.N. Long, J. Lumin. 161 (2015) 389-394.
DOI URL |
[36] |
L. Song, P. Du, Q. Jiang, H. Cao, J. Xiong, J. Lumin. 150 (2014) 50-54.
DOI URL |
[37] |
J.Y. Sun, Y.N. Sun, J.H. Zeng, H.Y. Du, J. Phys. Chem. Solids 74 (2013) 1007-1011.
DOI URL |
[38] |
Z. Mao, Y. Zhu, Y. Zeng, L. Gan, Y. Wang, J. Lumin. 143 (2013) 587-591.
DOI URL |
[39] |
Y. Liu, Z. Yang, Mater. Lett. 65 (2011) 1853-1855.
DOI URL |
[40] |
A.D. Sontakke, K. Biswas, K. Annapurna, J. Lumin. 129 (2009) 1347-1355.
DOI URL |
[41] |
T. Wang, Y. Hu, L. Chen, X. Wang, G. Ju, Appl. Phys. A 120 (2015) 301-308.
DOI URL |
[42] |
Z. Mao, Y. Zhu, L. Gan, Y. Zeng, F. Xu, Y. Wang, H. Tian, J. Li, D. Wang, J. Lumin. 134 (2013) 148-153.
DOI URL |
[43] |
C.H. Lu, S.V. Godbole, M. Qureshi, Jpn. J. Appl. Phys. 45 (2006) 2606-2611.
DOI URL |
[44] |
P. Li, L. Pang, Z. Wang, Z. Yang, Q. Guo, X. Li, J. Alloys Compd. 478 (2009) 813-815.
DOI URL |
[45] |
M. Zarabian, M. Bartolini, P. Pereira-Almao, V. Thangadurai, J. Electrochem. Soc. 164 (2017) A1133-A1139.
DOI URL |
[46] |
D.A. Hakeem, D.H. Kim, S.W. Kim, K. Park, Dyes Pigm. 163 (2019) 715-724.
DOI URL |
[47] |
K. Park, D.H. Kim, D.A. Hakeem, G.W. Jung, S.W. Kim, Ceram. Int. 46 (2020) 10194-10202.
DOI URL |
[48] |
K. Park, D.A. Hakeem, J.W. Pi, S.W. Kim, Ceram. Int. 44 (2018) 1929-1934.
DOI URL |
[49] |
A.D. Sontakke, K. Annapurna, Spectrochim. Acta A 94 (2012) 180-185.
DOI URL |
[50] |
P.F. Smet, J. Botterman, K.V. Eeckhout, K. Korthout, D. Poelman, Opt. Mater. 36 (2014) 1913-1919.
DOI URL |
[51] | JCPDS No. 21-0839. |
[52] |
F. Yang, Y. Liang, M. Liu, X. Li, N. Wang, Z. Xia, Ceram. Int. 38 (2012) 6197-6201.
DOI URL |
[53] |
K. Dong, Z. Li, S. Xiao, Z. Xiang, X. Zhang, X. Yang, X. Jin, J. Alloys Compd. 543 (2012) 105-108.
DOI URL |
[54] |
M. Midorikawa, T. Hashimoto, Y. Ishibashi, Y. Takagi, J. Cryst. Growth 44 (1978) 505-506.
DOI URL |
[55] |
R.L. Lehman, J.S. Gentry, N.G. Glumac, Thermochim. Acta 316 (1998) 1-9.
DOI URL |
[56] |
J. Zhou, Y. Wang, B. Liu, Y. Lu, J. Alloys Compd. 484 (2009) 439-443.
DOI URL |
[57] |
H. Guo, H. Zhang, R.F. Wei, M.D. Zheng, L.H. Zhang, Opt. Express 19 (2011) A201-A206.
DOI URL |
[58] |
Y. Chen, M. Gong, K.W. Cheah, Mater. Sci. Eng. B 166 (2010) 24-27.
DOI URL |
[59] |
D.A. Hakeem, K. Park, New J. Chem. 39 (2015) 7768-7772.
DOI URL |
[60] |
A.L. Allred, J. Inorg. Nucl. Chem. 17 (1961) 215-221.
DOI URL |
[1] | Dandan Wang, Junping Ju, Shuang Wang, Yeqiang Tan. Research progress on the luminescence of biomacromolecules [J]. J. Mater. Sci. Technol., 2021, 76(0): 60-75. |
[2] | Elham Gharibshahi, Brandon D. Young, Amar S. Bhalla, Ruyan Guo. Theory, simulation and experiment of optical properties of cobalt ferrite (CoFe2O4) nanoparticles [J]. J. Mater. Sci. Technol., 2020, 57(0): 180-187. |
[3] | Kaili Yao, Xiaojun Tan, Bing Dai, Jie Bai, Qiaoyang Sun, Wenxin Cao, Jiwen Zhao, Lei Yang, Jiecai Han, Jiaqi Zhu. Au nanospheres modified boron-doped diamond microelectrode grown via hydrogen plasma etching solid doping source for dopamine detection [J]. J. Mater. Sci. Technol., 2020, 49(0): 42-46. |
[4] | Periša Jovana, Antić Željka, Ma Chong-Geng, Papan Jelena, Jovanović Dragana, D.Dramićanin Miroslav. Pesticide-induced photoluminescence quenching of ultra-small Eu3+-activated phosphate and vanadate nanoparticles [J]. J. Mater. Sci. Technol., 2020, 38(0): 197-204. |
[5] | Jitendra K. Behera, WeiJie Wang, Xilin Zhou, Shan Guan, Wu Weikang, Yang A. Shengyuan, Robert E. Simpson. Resistance modulation in Ge2Sb2Te5 [J]. J. Mater. Sci. Technol., 2020, 50(0): 171-177. |
[6] | Lu Han, Honghua Fang, Chunmiao Du, Jianxia Sun, Youyong Li, Wanli Ma. Synthesis of ultra-narrow PbTe nanorods with extremely strong quantum confinement [J]. J. Mater. Sci. Technol., 2019, 35(5): 703-710. |
[7] | Anil K.Battu, Nanthakishore Makeswaran, C.V. Raman. Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2734-2741. |
[8] | Yihe Jia, Haicheng Wang, Long Xiang, Xiaoguang Liu, Wei Wei, Ning Ma, Dongbai Sun. Tunable emission properties of core-shell ZnCuInS-ZnS quantum dots with enhanced fluorescence intensity [J]. J. Mater. Sci. Technol., 2018, 34(6): 942-948. |
[9] | Xinyi Jia, Nan Huang, Yuning Guo, Lusheng Liu, Peng Li, Zhaofeng Zhai, Bing Yang, Ziyao Yuan, Dan Shi, Xin Jiang. Growth behavior of CVD diamond films with enhanced electron field emission properties over a wide range of experimental parameters [J]. J. Mater. Sci. Technol., 2018, 34(12): 2398-2406. |
[10] | Jie Du, Rong Yang, Changqing Fang, Xing Zhou, Shaofei Pan, Wanqing Lei, Jian Su, Youliang Cheng, Donghong Liu. Preparation and characterization of organic pigments and their fluorescence properties depending on bulk structure [J]. J. Mater. Sci. Technol., 2018, 34(11): 2218-2224. |
[11] | Li Xichao, Zheng Lili, Qian Yuhai, Xu Jingjun, Li Meishuan. Effects of High Temperature Oxidation on Mechanical Properties of Ti3AlC2 [J]. J. Mater. Sci. Technol., 2017, 33(6): 596-602. |
[12] | Tingzhi Liu, Yangyang Li, Huan Ke, Yuhai Qian, Shuwang Duo, Yanli Hong, Xinyuan Sun. Chemical Bath Co-deposited ZnS Film Prepared from Different Zinc Salts: ZnSO4-Zn(CH3COO)2, Zn(NO3)2-Zn(CH3COO)2, or ZnSO4-Zn(NO3)2 [J]. J. Mater. Sci. Technol., 2016, 32(3): 207-217. |
[13] | Naudin G.,Entradas T.,Barrocas B.,Monteiro O.C.. Titanate Nanorods Modified with Nanocrystalline ZnS Particles and Their Photocatalytic Activity on Pollutant Removal [J]. J. Mater. Sci. Technol., 2016, 32(11): 1122-1128. |
[14] | Sanjeev K. Sharma, Deuk Young Kim. Microstructure and Optical Properties of Yttrium-doped Zinc Oxide (YZO) Nanobolts Synthesized by Hydrothermal Method [J]. J. Mater. Sci. Technol., 2016, 32(1): 12-16. |
[15] | Mohd Anis, M.D. Shirsat, S.S. Hussaini, B. Joshi, G.G. Muley. Effect of Sodium Metasilicate on Structural, Optical, Dielectric and Mechanical Properties of ADP Crystal [J]. J. Mater. Sci. Technol., 2016, 32(1): 62-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||