Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 42-46    DOI: 10.1016/j.jmst.2020.02.003
Research Article Current Issue | Archive | Adv Search |
Au nanospheres modified boron-doped diamond microelectrode grown via hydrogen plasma etching solid doping source for dopamine detection
Kaili Yao, Xiaojun Tan, Bing Dai*(), Jie Bai, Qiaoyang Sun, Wenxin Cao, Jiwen Zhao, Lei Yang, Jiecai Han, Jiaqi Zhu*()
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
Download:  HTML  PDF(3009KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Boron doped diamond (BDD) electrode is a promising electrochemical material for detecting dopamine level in the human’s body. In this work, we developed a new doping source - graphite and solid boron oxide powders to synthesize BDD film with microwave plasma chemical vapor deposition, so as to avoid using toxic or corrosive dopants, such as boroethane and trimethylborate. The synthesized BDD film is pinhole free and with high doping density of 8.44 × 1020 cm-3 calculated from the Raman spectroscopy. Subsequently, Au nanospheres were decorated on the surface of BDD film to improve electrochemical performance of the BDD film. The Au nanoparticles modified BDD electrode demonstrates an excellent electrochemical response, a high sensitivity (in the range of 5 μM-1 mM), and a low detection limit (~ 0.8 μM) for detecting dopamine.

Key words:  Boron doped diamond      Graphite powders      Boron oxide powders      Optical emission spectroscopy      Dopamine     
Received:  03 July 2019     
Corresponding Authors:  Bing Dai,Jiaqi Zhu     E-mail:  daibinghit@vip.126.com;zhujq@hit.edu.cn

Cite this article: 

Kaili Yao, Xiaojun Tan, Bing Dai, Jie Bai, Qiaoyang Sun, Wenxin Cao, Jiwen Zhao, Lei Yang, Jiecai Han, Jiaqi Zhu. Au nanospheres modified boron-doped diamond microelectrode grown via hydrogen plasma etching solid doping source for dopamine detection. J. Mater. Sci. Technol., 2020, 49(0): 42-46.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.02.003     OR     https://www.jmst.org/EN/Y2020/V49/I0/42

Fig. 1.  Schematic illustrations of making doping source with graphite and B2O3 powders (a, b); (c-e) process for the growth of BDD film; (f, g) manufacturing Au nanospheres modified BDD film.
Fig. 2.  SEM images of pure BDD film (a, b) and Au nanoparticles modified BDD film (c, d) with low (a, c) and higher (b, d) magnification. The inset in (d) was EDS of Au nanoparticles modified BDD.
Fig. 3.  OES for plasma induced by hydrogen etching mixture of graphite and B2O3 after 30 min.
Fig. 4.  Raman spectra of (a) BDD film and (b) Au nanoparticles modified BDD film.
Fig. 5.  (a) CVs of Au nanospheres modified BDD electrode in 0.1 M PBS under different scan rates: 0.02, 0.04, 0.06, 0.08, 0.1, 0.2 V s-1 in 10 μM DA; (b) Linear curves of peak currents versus square root of scan rate.
Fig. 6.  (a) DPVs of Au nanospheres modified BDD electrode in 0.1 M PBS with increasing amounts of DA concentration from 5 μM to 1 mM. The inset is the magnified CPV curves in 5 and 10 μM; (b) Linear curves of peak currents versus the DA concentration.
[1] Y. Qi, H. Long, L. Ma, Q. Wei, S. Li, Z. Yu, J. Hu, P. Liu, Y. Wang, L. Meng, Appl. Surf. Sci. 390 (2016) 882-889.
doi: 10.1016/j.apsusc.2016.08.158
[2] Y. Li, H. Li, M. Li, C. Li, D. Sun, B. Yang, Electrochim. Acta 258 (2017) 744-753.
doi: 10.1016/j.electacta.2017.11.121
[3] Y. Wang, J. Mater. Sci. Technol. 32 (2016) 801-809.
doi: 10.1016/j.jmst.2016.08.002
[4] H. Zhuang, N. Yang, H. Fu, L. Zhang, C. Wang, N. Huang, X. Jiang, ACS Appl. Mater. Interf. 7 (2015) 5384-5390.
doi: 10.1021/am508851r
[5] A. Masood, M. Aslam, M.A. Tamor, T.J. Potter, Appl. Phys. Lett. 61 (1992) 1832-1834.
doi: 10.1063/1.108389
[6] K. Okano, H. Naruki, Y. Akiba, T. Kurosu, M. Iida, Y. Hirose, J. Appl. Phys. 27 (1988) L173-175.
doi: 10.1143/JJAP.27.L173
[7] K. Yao, B. Dai, L. Yang, G. Shu, J. Zhao, K. Liu, W. Cao, V. Ralchenko, J. Han, J. Zhu, Thin Solid Films 669 (2019) 103-107.
doi: 10.1016/j.tsf.2018.10.044
[8] X. Lu, Q. Yang, C. Xiao, A. Hirose, Diamond Relat. Mater. 16 (2007) 1623-1627.
doi: 10.1016/j.diamond.2007.02.005
[9] Q. Yang, W. Chen, C. Xiao, R. Sammynaiken, A. Hirose, Carbon 43 (2005) 748-754.
doi: 10.1016/j.carbon.2004.10.047
[10] K. Yao, B. Dai, J. Zhu, V. Ralchenko, G. Shu, J. Zhao, P. Wang, B. Liu, G. Gao, M. Sun, K. Liu, Z. Lv, L. Yang, J. Han, Powder Technol. 322 (2017) 124-130.
doi: 10.1016/j.powtec.2017.09.021
[11] K.E. Toghill, R.G. Compton, Electroanalysis 22 (2010) 1947-1956.
doi: 10.1002/elan.201000072
[12] H. Zhou, N. Du, J. Guo, S. Liu, J. Mater. Sci. Technol. 35 (2019) 1797-1802.
doi: 10.1016/j.jmst.2019.03.019
[13] X. Mei, Q. Wei, H. Long, Z. Yu, Z. Deng, L. Meng, J. Wang, J. Luo, C.T. Lin, L. Ma, K. Zheng, N. Hu, Electrochim. Acta 271 (2018) 84-91.
doi: 10.1016/j.electacta.2018.03.133
[14] K. Yao, B. Dai, V. Ralchenko, G. Shu, J. Zhao, K. Liu, L. Yang, A. Bolshakov, J. Han, J. Zhu, J. Coat. Sci. Technol. 5 (2018) 12-18.
doi: 10.6000/2369-3355
[15] K. Yao, B. Dai, X. Tan, L. Yang, J. Zhao, V. Ralchenko, G. Shu, K. Liu, J. Han, J. Zhu, Cryst. Eng. Comm. 21 (2019) 2502-2507.
doi: 10.1039/C9CE00120D
[16] K. Yao, B. Dai, V. Ralchenko, G. Shu, J. Zhao, K. Liu, Z. Yang, L. Yang, J. Han, J. Zhu, Diamond Relat. Mater. 82 (2018) 33-40.
doi: 10.1016/j.diamond.2017.12.020
[17] A. Fiori, T. Teraji, Diamond Relat. Mater. 76 (2017) 38-43.
doi: 10.1016/j.diamond.2017.04.007
[18] X. Jia, N. Huang, Y. Guo, L. Liu, P. Li, Z. Zhai, B. Yang, Z. Yuan, D. Shi, X. Jiang, J. Mater. Sci. Technol. 34 (2018) 2398-2406.
doi: 10.1016/j.jmst.2018.04.021
[19] Z. Deng, H. Long, Q. Wei, Z. Yu, B. Zhou, Y. Wang, L. Zhang, S. Li, L. Ma, Y. Xie, J. Min, Sens. Actuators B Chem. 242 (2017) 825-834.
doi: 10.1016/j.snb.2016.09.176
[20] X. Wang, X. Shen, F. Sun, B. Shen, Diamond Relat. Mater. 73 (2017) 218-231.
doi: 10.1016/j.diamond.2016.09.025
[21] Z. Gong, N. Hu, W. Ye, K. Zheng, C. Li, L. Ma, Q. Wei, Z. Yu, K. Zhou, N. Huang, C.T. Lin, J. Luo, J. Electroanal. Chem. 841 (2019) 13-141. d
[1] Fan Changjiang,Wang Dong-An. Novel Gelatin-based Nano-gels with Coordination-induced Drug Loading for Intracellular Delivery[J]. 材料科学与技术, 2016, 32(9): 840-844.
[2] Xiaoli Liu, Zhen Zhen, Jing Liu, Tingfei Xi, Yudong Zheng, Shaokang Guan, Yufeng Zheng, Yan Cheng. Multifunctional MgF2/Polydopamine Coating on Mg Alloy for Vascular Stent Application[J]. J. Mater. Sci. Technol., 2015, 31(7): 733-743.
[3] Yuying XIONG, Tao MA, Linghong KONG, Junfang CHEN, Xianqiu WU, Honghua YU, Zhenxi ZHANG. Improvement of Optical Reactivity for Nano-TiO2 Film by Nitrogen ECR Plasma[J]. J. Mater. Sci. Technol., 2006, 22(03): 353-358.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.