J. Mater. Sci. Technol. ›› 2021, Vol. 82: 197-206.DOI: 10.1016/j.jmst.2020.12.035
• Research Article • Previous Articles Next Articles
Zhengxiu Luoa,b, Ning Wangc, Xiaoyan Peia, Tao Daia, Zhigang Zhaoa, Congmei Chend, Maofei Rana,*(), Wenjing Sunb,*(
)
Received:
2020-08-19
Revised:
2020-12-03
Accepted:
2020-12-10
Published:
2021-01-27
Online:
2021-01-27
Contact:
Maofei Ran,Wenjing Sun
About author:
∗ E-mail addresses: murphy_ran@swun.edu.cn (M. Ran),Zhengxiu Luo, Ning Wang, Xiaoyan Pei, Tao Dai, Zhigang Zhao, Congmei Chen, Maofei Ran, Wenjing Sun. Facile one-pot synthesis of superfine palladium nanoparticles on polydopamine-functionalized carbon nanotubes as a nanocatalyst for the Heck reaction[J]. J. Mater. Sci. Technol., 2021, 82: 197-206.
Fig. 1. TEM images of Pd/CNTs-PDA (a) and Pd/CNTs (b), XRD patterns of Pd/CNTs-PDA and Pd/CNTs catalysts (c), TG analysis of Pd/CNTs-PDA and Pd/CNTs in air (d).
Fig. 3. XPS survey spectrum (a) and Pd 3d region (b) of Pd/CNTs-PDA and Pd/CNTs catalysts. Pd 3d (c), C 1s (d), N 1s (e), and O 1s (f) spectra of Pd/CNTs-PDA.
![]() | ||||
---|---|---|---|---|
Entry | T/°C | Time/h | Pd*/mol% | Yield/% |
1 | 100 | 3 | 0.015 | 80.0 |
2 | 100 | 3 | 0.037 | 90.6 |
3 | 100 | 3 | 0.075 | 92.7 |
4 | 100 | 3 | 0.112 | 91.9 |
5 | 100 | 3 | 0.150 | 99.1 |
6 | 100 | 3 | 0.187 | 93.8 |
7 | 100 | 3 | 0.225 | 93.6 |
8 | 100 | 0.5 | 0.150 | 79.2 |
9 | 100 | 1 | 0.150 | 89.6 |
10 | 100 | 1.5 | 0.150 | 94.3 |
11 | 100 | 2 | 0.150 | 96.3 |
12 | 100 | 2.5 | 0.150 | 97.9 |
13 | 60 | 3 | 0.150 | 24.5 |
14 | 70 | 3 | 0.150 | 51.1 |
15 | 80 | 3 | 0.150 | 63.0 |
16 | 90 | 3 | 0.150 | 85.3 |
18 | 60 | 24 | 0.150 | 63.0 |
18 | 70 | 12 | 0.150 | 91.2 |
19 | 70 | 24 | 0.150 | 95.8 |
20 | 80 | 9 | 0.150 | 91.6 |
21 | 80 | 12 | 0.150 | 92.7 |
22 | 80 | 24 | 0.150 | 98.7 |
Table 1 Catalytic performances of Pd/CNTs-PDA for the Heck coupling reaction of iodobenzene with methyl acrylate.
![]() | ||||
---|---|---|---|---|
Entry | T/°C | Time/h | Pd*/mol% | Yield/% |
1 | 100 | 3 | 0.015 | 80.0 |
2 | 100 | 3 | 0.037 | 90.6 |
3 | 100 | 3 | 0.075 | 92.7 |
4 | 100 | 3 | 0.112 | 91.9 |
5 | 100 | 3 | 0.150 | 99.1 |
6 | 100 | 3 | 0.187 | 93.8 |
7 | 100 | 3 | 0.225 | 93.6 |
8 | 100 | 0.5 | 0.150 | 79.2 |
9 | 100 | 1 | 0.150 | 89.6 |
10 | 100 | 1.5 | 0.150 | 94.3 |
11 | 100 | 2 | 0.150 | 96.3 |
12 | 100 | 2.5 | 0.150 | 97.9 |
13 | 60 | 3 | 0.150 | 24.5 |
14 | 70 | 3 | 0.150 | 51.1 |
15 | 80 | 3 | 0.150 | 63.0 |
16 | 90 | 3 | 0.150 | 85.3 |
18 | 60 | 24 | 0.150 | 63.0 |
18 | 70 | 12 | 0.150 | 91.2 |
19 | 70 | 24 | 0.150 | 95.8 |
20 | 80 | 9 | 0.150 | 91.6 |
21 | 80 | 12 | 0.150 | 92.7 |
22 | 80 | 24 | 0.150 | 98.7 |
![]() | |||||
---|---|---|---|---|---|
Catalyst | Pd/ mol%a | Steps | T/°C | Time/h | Yield/% |
Pd/CS-PVA | 0.53 | (1) CS/PVA; (2) Pd/CS-PVA. | 110 | 3 | 95* [ |
Pd/PVA | 2 | (1) PVA; (2) Pd/PVA. | 110 | 4 | 97.1* [ |
Pd@MOFs-3 | 1.25 | (1) MOFs-3; (2) Pd@MOFs-3. | 80 | 24 | 99* [ |
MCM-41@aPEI-Pd | 1 | (1) MCM-41; | 90 | 9 | 90* [ |
(2) MCM-41@PEI; | |||||
(3) MCM- 41@aPEI; | |||||
(4)MCM-41@aPEI- Pd. | |||||
Pd(II)-POLI-TAG | 0.1 | (1) SP-Cl; | 130 | 2 | 99* [ |
(2) Functionalization of SP-Cl2; | |||||
(3) SP-supported imidazolium salt 5. | |||||
(4) Pd(II)-POLI-TAG | |||||
Immobilization of [PdCl4]2-. | |||||
SiO2-C60-IL-Pd | 0.1 | (1) SiO2-C60-IL; | 120 | 4 | 99* [ |
(2) SiO2-C60-IL-Pd. | |||||
Pd-rGO/CNT/CaFe2O4 | 0.1 | (1) rGO/CNT; | 130 | 5 | 99.9* [ |
(2) Pd-rGO/CNT; | |||||
(3) Pd-rGO/CNT/CaFe2O4. | |||||
IRMOF-3-Pd | 0.165 | (1) IRMOF-3; (2) IRMOF-3-Pd. | 100 | 0.5 | 54 [ |
Uio-67-Pd-NHC | 0.5 | (1) Pd-NHDC-H2L; | 120 | 1 | 98 [ |
(2) UiO-67-Pd-NHDC | |||||
PdNs-PAMAM-g-MWCNTs | 0.3 | (1) Amino-functionalized MWCNTs; | 100 | 1 | 95 [ |
(2) PAMAM-grafted-MWCNTs; | |||||
(3) PdNs-PAMAM-g-MWCNTs. | |||||
Pd/CNTs-PDA | 0.15 | One pot. | 100 | 3 | 96.5 This work |
Pd/CNTs-PDA | 0.3 | One pot. | 70 | 24 | 95.8 This work |
Pd/CNTs-PDA | 0.3 | One pot. | 80 | 24 | 98.7 This work |
Table 2 Catalytic performance of different Pd-based catalysts in the coupling of iodobenzene and methyl acrylate.
![]() | |||||
---|---|---|---|---|---|
Catalyst | Pd/ mol%a | Steps | T/°C | Time/h | Yield/% |
Pd/CS-PVA | 0.53 | (1) CS/PVA; (2) Pd/CS-PVA. | 110 | 3 | 95* [ |
Pd/PVA | 2 | (1) PVA; (2) Pd/PVA. | 110 | 4 | 97.1* [ |
Pd@MOFs-3 | 1.25 | (1) MOFs-3; (2) Pd@MOFs-3. | 80 | 24 | 99* [ |
MCM-41@aPEI-Pd | 1 | (1) MCM-41; | 90 | 9 | 90* [ |
(2) MCM-41@PEI; | |||||
(3) MCM- 41@aPEI; | |||||
(4)MCM-41@aPEI- Pd. | |||||
Pd(II)-POLI-TAG | 0.1 | (1) SP-Cl; | 130 | 2 | 99* [ |
(2) Functionalization of SP-Cl2; | |||||
(3) SP-supported imidazolium salt 5. | |||||
(4) Pd(II)-POLI-TAG | |||||
Immobilization of [PdCl4]2-. | |||||
SiO2-C60-IL-Pd | 0.1 | (1) SiO2-C60-IL; | 120 | 4 | 99* [ |
(2) SiO2-C60-IL-Pd. | |||||
Pd-rGO/CNT/CaFe2O4 | 0.1 | (1) rGO/CNT; | 130 | 5 | 99.9* [ |
(2) Pd-rGO/CNT; | |||||
(3) Pd-rGO/CNT/CaFe2O4. | |||||
IRMOF-3-Pd | 0.165 | (1) IRMOF-3; (2) IRMOF-3-Pd. | 100 | 0.5 | 54 [ |
Uio-67-Pd-NHC | 0.5 | (1) Pd-NHDC-H2L; | 120 | 1 | 98 [ |
(2) UiO-67-Pd-NHDC | |||||
PdNs-PAMAM-g-MWCNTs | 0.3 | (1) Amino-functionalized MWCNTs; | 100 | 1 | 95 [ |
(2) PAMAM-grafted-MWCNTs; | |||||
(3) PdNs-PAMAM-g-MWCNTs. | |||||
Pd/CNTs-PDA | 0.15 | One pot. | 100 | 3 | 96.5 This work |
Pd/CNTs-PDA | 0.3 | One pot. | 70 | 24 | 95.8 This work |
Pd/CNTs-PDA | 0.3 | One pot. | 80 | 24 | 98.7 This work |
Entry | Substrate | Time/min | Yield/% | TOF/h-1 |
---|---|---|---|---|
1 | ![]() | 40 | 90.0 | 895.5 |
2 | ![]() | 40 | 89.5 | 890.5 |
3 | ![]() | 60 | 92.6 | 617.3 |
4 | ![]() | 120 | 98.8 | 329.3 |
5 | ![]() | 90 | 96.2 | 427.6 |
6 | ![]() | 90 | 95.3 | 423.6 |
7 | ![]() | 360 | 58.8 | 65.3 |
8 | ![]() | 60 | 91.2 | 608.0 |
Table 3 Heck reactions of selected aryl iodides with methyl acrylate over the Pd/CNTs-PDA catalyst.
Entry | Substrate | Time/min | Yield/% | TOF/h-1 |
---|---|---|---|---|
1 | ![]() | 40 | 90.0 | 895.5 |
2 | ![]() | 40 | 89.5 | 890.5 |
3 | ![]() | 60 | 92.6 | 617.3 |
4 | ![]() | 120 | 98.8 | 329.3 |
5 | ![]() | 90 | 96.2 | 427.6 |
6 | ![]() | 90 | 95.3 | 423.6 |
7 | ![]() | 360 | 58.8 | 65.3 |
8 | ![]() | 60 | 91.2 | 608.0 |
Catalyst | Pd content/wt% | |
---|---|---|
Fresh | Used* | |
Pd/CNTs-PDA | 3.99 | 3.46 |
Pd/CNTs | 4.23 | 2.61 |
Table 4 Pd contents of the fresh and reused Pd/CNTs and Pd/CNTs-PDA catalyst as determined by ICP-OES measurements.
Catalyst | Pd content/wt% | |
---|---|---|
Fresh | Used* | |
Pd/CNTs-PDA | 3.99 | 3.46 |
Pd/CNTs | 4.23 | 2.61 |
[1] |
R.F. Heck, J.P. Nolley, J. Org. Chem. 37 (1972) 2320-2322.
DOI URL |
[2] |
X. Wen, T. Dai, Z.G. Zhao, Z.X. Luo, C.M. Chen, W.J. Sun, M.F. Ran, Appl. Catal, A 591 (2020), 117405.
DOI URL |
[3] |
S. Ko, J. Jang, Angew. Chem.-Int. Edit. 45 (2006) 7564-7567.
DOI URL |
[4] |
P. Veerakumar, M. Velayudham, K.L. Lu, S. Rajagopal, Appl. Catal. A 455 (2013) 247-260.
DOI URL |
[5] |
B.J. Gallon, R.W. Kojima, R.B. Kaner, P.L. Diaconescu, Angew. Chem.-Int. Edit. 46 (2007) 7251-7254.
DOI URL |
[6] |
A.L. Isfahani, I. Mohammadpoor-Baltork, V. Mirkhani, A.R. Khosropour, M. Moghadam, S. Tangestaninejad, R. Kia, Adv. Synth. Catal. 355 (2013) 957-972.
DOI URL |
[7] |
J. Shin, J. Bertoia, K.R. Czerwinski, C. Bae, Green Chem. 11 (2009) 1576-1580.
DOI URL |
[8] |
H.A. Patel, A.L. Patel, A.V. Bedekar, Appl. Organomet. Chem. 29 (2014) 1-6.
DOI URL |
[9] |
K. Kohler, R.G. Heidenreich, J.G.E. Krauter, M. Pietsch, Chem.-Eur. J. 8 (2002) 622-631.
DOI URL |
[10] |
R.G. Heidenreich, J.G.E. Krauter, J. Pietsch, K. Köhler, J. Mol. Catal. A-Chem. 182- 183 (2002) 499-509.
DOI URL |
[11] |
M.Y. Zhu, Y. Wang, C.J. Wang, W. Li, G.W. Diao, Catal. Sci. Technol. 3 (2013) 952-961.
DOI URL |
[12] |
Y.C. Su, L.Y. Ma, J. Chen, J.H. Xu, Carbohydr. Polym. 175 (2017) 113-121.
DOI URL |
[13] |
M.Y. Zhu, G.W. Diao, J. Phys. Chem. C 115 (2011) 24743-24749.
DOI URL |
[14] |
A.K. Rathi, M.B. Gawande, J. Pechousek, J. Tucek, C. Aparicio, M. Petr, O. Tomanec, R. Krikavova, Z. Travnicek, R.S. Varma, R. Zboril, Green Chem. 18 (2016) 2363-2373.
DOI URL |
[15] |
L. Gao, C.L. Wang, R. Li, R. Li, Q.W. Chen, Nanoscale 8 (2016) 8355-8362.
DOI URL |
[16] |
M. Hosseini-Sarvari, Z. Razmi, M.M. Doroodmand, Appl. Catal. A-Gen. 475 (2014) 477-486.
DOI URL |
[17] |
H.Q. Yang, Y.W. Wang, Y. Qin, Y.Z. Chong, Q.Z. Yang, G. Li, L. Zhang, W. Li, Green Chem. 13 (2011) 1352-1361.
DOI URL |
[18] |
H.Q. Yang, X.J. Han, Z.C. Ma, R.Q. Wang, J. Liu, X.F. Ji, Green Chem. 12 (2010) 441-451.
DOI URL |
[19] |
H.Q. Yang, X.J. Han, G. Li, Y.W. Wang, Green Chem. 11 (2009) 1184-1193.
DOI URL |
[20] | H. Yoon, S. Ko, J. Jang, Chem. Commun. 38 (2007) 1468-1470. |
[21] |
M.R. Nabid, Y. Bide, S.J. Tabatabaei Rezaei, Appl. Catal. A-Gen. 406 (2011) 124-132.
DOI URL |
[22] |
S.-i. Yamamoto, H. Kinoshita, H. Hashimoto, Y. Nishina, Nanoscale 6 (2014) 6501-6505.
DOI URL |
[23] |
P.Y. Wang, G.H. Zhang, H.Y. Jiao, L.W. Liu, X.Y. Deng, Y. Chen, X.P. Zheng, Appl. Catal., A 489 (2015) 188-192.
DOI URL |
[24] |
A. Kunfi, V. Szabo, A. Mastalir, I. Bucsi, M. Mohai, P. Nemeth, I. Bertoti, G. London, Chemcatchem 9 (2017) 3236-3244.
DOI URL |
[25] |
K. Chizari, I. Janowska, M. Houllé, I. Florea, O. Ersen, T. Romero, P. Bernhardt, M.J. Ledoux, C. Pham-Huu, Appl. Catal., A 380 (2010) 72-80.
DOI URL |
[26] |
K. Chizari, A. Vena, L. Laurentius, U. Sundararaj, Carbon 68 (2014) 369-379.
DOI URL |
[27] |
Z.Y. Bai, C.L. Zhou, N. Gao, H.J. Pang, H.Y. Ma, RSC Adv. 6 (2016) 937-946.
DOI URL |
[28] |
A.R. Hajipour, Z. Khorsandi, Catal. Commun. 77 (2016) 1-4.
DOI URL |
[29] |
A. Karimi, B. Nasernejad, A.M. Rashidi, A. Tavasoli, M. Pourkhalil, Fuel 117 (2014) 1045-1051.
DOI URL |
[30] |
M.A. Correa-Duarte, N. Sobal, L.M. Liz-Marzán, M. Giersig, Adv. Mater. 16 (2004) 2179-2184.
DOI URL |
[31] |
M.A. Correa-Duarte, J. Pérez-Juste, A. Sánchez-Iglesias, M. Giersig, L.M. Liz-Marzán, Angew. Chem.-Int. Edit. 44 (2005) 4375-4378.
DOI URL |
[32] |
T.M. Day, P.R. Unwin, N.R. Wilson, J.V. Macpherson, J. Am. Chem. Soc. 127 (2005) 10639-10647.
DOI URL |
[33] |
D.R. Kauffman, A. Star, Nano Lett. 7 (2007) 1863-1868.
PMID |
[34] |
A. Felten, C. Bittencourt, J.F. Colomer, G. Van Tendeloo, J.J. Pireaux, Carbon 45 (2007) 110-116.
DOI URL |
[35] |
B.H. Wu, D. Hu, Y.J. Kuang, Y.M. Yu, X.H. Zhang, J.H. Chen, Chem. Commun. 47 (2011) 5253-5255.
DOI URL |
[36] |
Z.Q. Tan, H. Abe, S. Ohara, J. Mater. Chem. 21 (2011) 12008-12014.
DOI URL |
[37] |
C.Y. Li, L. Li, W. Cai, S.L. Kodjie, K.K. Tenneti, Adv. Mater. 17 (2005) 1198-1202.
DOI URL |
[38] |
L.Y. Li, Y. Yang, G.L. Yang, X.M. Chen, B.S. Hsiao, B. Chu, J.E. Spanier, Nano Lett. 6 (2006) 1007-1012.
DOI URL |
[39] |
B. Li, L.Y. Li, B.B. Wang, C.Y. Li, Nat. Nanotechnol. 4 (2009) 358-362.
DOI URL |
[40] |
L. Shi, R.P. Liang, J.D. Qiu, J. Mater. Chem. 22 (2012) 17196-17203.
DOI URL |
[41] |
R. Yu, R. Liu, J. Deng, M.F. Ran, N. Wang, W. Chu, Z.W. He, Z. Du, C.F. Jiang, W.J. Sun, Catal. Sci. Technol. 8 (2018) 1423-1434.
DOI URL |
[42] |
W.C. Ye, Y. Chen, Y.X. Zhou, J.J. Fu, W.C. Wu, D.Q. Gao, F. Zhou, C.M. Wang, D.S. Xue, Electrochim. Acta 142 (2014) 18-24.
DOI URL |
[43] |
B. Delley, J. Chem. Phys. 113 (2000) 7756-7764.
DOI URL |
[44] |
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671-6687.
PMID |
[45] | A. Rappe, K. Rabe, E. Kaxiras, J. Joannopoulos, Phys. Rev. B 44 (1991) 175-176. |
[46] |
S. Grimme, J. Antony, S. Ehrlich, H.A. Krieg, J. Chem. Phys. 132 (2010) 154104-154122.
DOI URL |
[47] |
F.W. Zhang, J. J, X. Zhong, S.W. Li, J.R. Niu, R. Li, J.T. Ma, Green Chem. 13 (2011) 1238-1243.
DOI URL |
[48] |
G.Q. Guo, F. Qin, D. Yang, C.C. Wang, H.L. Xu, S. Yang, Chem. Mat. 20 (2008) 2291-2297.
DOI URL |
[49] |
W. Tamakloe, D.A. Agyeman, M. Park, J. Yang, Y.M. Kang, J. Mater. Chem. A 7 (2019) 7396-7405.
DOI |
[50] |
Z.Y. Sun, Z.M. Liu, B.X. Han, S.D. Miao, Z.J. Miao, G.M. An, J. Colloid Interface Sci. 304 (2006) 323-328.
DOI URL |
[51] | US Department of Commerce, N., NIST X-Ray PhotoelectronSpectroscopy Database 1, Version 2, NIST NSRDS. |
[52] |
D. Wan, S.J. Yuan, G.L. Li, K.G. Neoh, E.T. Kang, ACS Appl. Mater. Interfaces 2 (2010) 3083-3091.
DOI URL |
[53] |
X. Sun, H. Shao, K. Xiang, Y. Yan, X. Yu, D.S. Li, W.T. Wu, L.B. Zhou, K.F. So, Y. Ren, S. Ramakrishna, A. Li, L.M. He, Carbon 113 (2017) 176-191.
DOI URL |
[54] | M. Arzillo, G. Mangiapia, A. Pezzella, R.K. Heenan, A. Radulescu, L. Paduano, M. d’Ischia, Eumelanin, Biomacromolecules 13 (2012) 2379-2390. |
[55] |
S. Reale, M. Crucianelli, A. Pezzella, M. D’Ischia, F.De Angelis, J. Mass Spectrom. 47 (2012) 49-53.
DOI URL |
[56] |
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426-430.
DOI URL |
[57] |
J.H. Jiang, L.P. Zhu, L.J. Zhu, B.K. Zhu, Y.Y. Xu, Langmuir 27 (2011) 14180-14187.
DOI URL |
[58] |
F. Bernsmann, V. Ball, F. Addiego, A. Ponche, M. Michel, J.Jd.A. Gracio, V. Toniazzo, D. Ruch, Langmuir 27 (2011) 2819-2825.
DOI PMID |
[59] |
D.R. Dreyer, D.J. Miller, B.D. Freeman, D.R. Paul, C.W. Bielawski, Langmuir 28 (2012) 6428-6435.
DOI URL |
[60] |
R.A. Zangmeister, T.A. Morris, M.J. Tarlov, Langmuir 29 (2013) 8619-8628.
DOI PMID |
[61] |
M. D’Ischia, A. Napolitano, A. Pezzella, P. Meredith, T. Sarna, Angew. Chem.-Int. Edit. 48 (2009) 3914-3921.
DOI URL |
[62] |
Y. Ilitchev, J. Simon, J. Phys. Chem. B 107 (2003) 7162-7171.
DOI URL |
[63] |
H.L. Huang, Z.Y. He, X.M. Lin, W.S. Ruan, Y.J. Liu, Z.H. Yang, Appl. Catal. A-Gen. 490 (2015) 65-70.
DOI URL |
[64] |
Z.Y. Ye, B.B. Zhang, L.J. Shao, G.Y. Xing, C.Z. Qi, H.Y. Tao, J. Appl. Polym. Sci. 136 (2019) 48026-48034.
DOI URL |
[65] |
L.J. Shao, W.X. Ji, P.D. Dong, M.F. Zeng, C.Z. Qi, X.M. Zhang, Appl. Catal. A 413-414 (2012) 267-272.
DOI URL |
[66] |
B. Gole, U. Sanyal, R. Banerjee, P.S. Mukherjee, Inorg. Chem. 55 (2016) 2345-2354.
DOI URL |
[67] | S.F. Motevalizadeh, M.F. Alipour, Ashori, A. Samzadeh-Kermani, H. Hamadi, M.R. Ganjali, H. Aghahosseini, A. Ramazani, M. Khoobi, E. Gholibegloo, Appl. Organomet. Chem. 32 (2018) 1-9. |
[68] |
H. Mahmoudi, F. Valentini, F. Ferlin, L.A. Bivona, I. Anastasiou, L. Fusaro, C. Aprile, A. Marrocchi, L. Vaccaro, Green Chem. 21 (2019) 355-360.
DOI |
[69] |
F. Giacalone, V. Campisciano, C. Calabrese, V. La Parola, L.F. Liotta, C. Aprile, M. Gruttadauria, J. Mater. Chem. A 4 (2016) 17193-17206.
DOI URL |
[70] |
M. Bagherzadeh, R. Kaveh, H. Mahmoudi, J. Mater. Chem. A 7 (2019) 16257-16266.
DOI |
[71] |
A. Nuri, N. Vucetic, J.H. Smått, Y. Mansoori, J.P. Mikkola, D.Y. Murzin, Catal. Lett. 149 (2019) 1941-1951.
DOI URL |
[72] |
Y.L. Wei, Y. Li, Y.Q. Chen, Y. Dong, J.J. Yao, X.Y. Han, Y.B. Dong, Inorg. Chem. 57 (2018) 4379-4386.
DOI URL |
[73] |
H.C. Brown, Y. Okamoto, J. Am. Chem. Soc. 80 (1958) 4979-4987.
DOI URL |
[74] |
S.G. Wang, P. Zhou, L. Jiang, Z.H. Zhang, K.J. Deng, Y.H. Zhang, Y.X. Zhao, J.L. Li, S. Bottle, H.Y. Zhu, J. Catal. 368 (2018) 207-216.
DOI URL |
[1] | Baoru Bian, Li Jin, Qiang Zheng, Fang Wang, Xiaohong Xu, Juan Du. Exchange-coupled nanocomposites with novel microstructure and enhanced remanence by a new approach [J]. J. Mater. Sci. Technol., 2021, 79(0): 118-122. |
[2] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[3] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[4] | Yuchao Lyu, Weilong Zhan, Zhumo Yu, Xinmei Liu, , Xiaoxing Wang, Chunshan Song, Zifeng Yan. One-pot synthesis of the highly efficient bifunctional Ni-SAPO-11 catalyst [J]. J. Mater. Sci. Technol., 2021, 76(0): 86-94. |
[5] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[6] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[7] | Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage [J]. J. Mater. Sci. Technol., 2020, 36(0): 70-78. |
[8] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
[9] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
[10] | Yaqi Shan, Mingliang Wang, Zengliang Shi, Milan Lei, Xiaoxuan Wang, Fu-Gen Wu, Huan-Huan Ran, Gowri Manohari Arumugam, Qiannan Cui, Chunxiang Xu. SERS-encoded nanocomposites for dual pathogen bioassay [J]. J. Mater. Sci. Technol., 2020, 43(0): 161-167. |
[11] | Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties [J]. J. Mater. Sci. Technol., 2020, 38(0): 86-92. |
[12] | Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater [J]. J. Mater. Sci. Technol., 2020, 45(0): 84-91. |
[13] | Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction [J]. J. Mater. Sci. Technol., 2019, 35(9): 2107-2114. |
[14] | C.C. Roach, Y.C. Lu. Finite element analysis of the effect of interlayer on interfacial stress transfer in layered graphene nanocomposites [J]. J. Mater. Sci. Technol., 2019, 35(6): 1147-1152. |
[15] | Chaoxuan Shen, Han Wang, Tengxin Zhang, You Zeng. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites [J]. J. Mater. Sci. Technol., 2019, 35(1): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||