J. Mater. Sci. Technol. ›› 2020, Vol. 50: 171-177.DOI: 10.1016/j.jmst.2020.03.016
• Research Article • Previous Articles Next Articles
Jitendra K. Beheraa,*(), WeiJie Wangb, Xilin Zhoua, Shan Guanc, Wu Weikangc, Yang A. Shengyuanc, Robert E. Simpsona
Received:
2019-12-04
Revised:
2020-01-06
Accepted:
2020-01-19
Published:
2020-08-01
Online:
2020-08-10
Contact:
Jitendra K. Behera
Jitendra K. Behera, WeiJie Wang, Xilin Zhou, Shan Guan, Wu Weikang, Yang A. Shengyuan, Robert E. Simpson. Resistance modulation in Ge2Sb2Te5[J]. J. Mater. Sci. Technol., 2020, 50: 171-177.
Fig. 1. (a) Schematic of the resistance modulation (volatile switching) of Ge2Sb2Te5 in a PCRAM device in its SET state. (b) A quarter-cut diagram of the pore-like PCRAM cell. (c) Schematic diagram of a transient resistance measurement setup. (d) Post-pulse resistance of the PCRAM cell as a function of voltage with different pulse duration. The blue regions represent the amorphous state (RESET), and the red region represents the crystalline state (SET) of the materials during the RESET process. (e) Typical colour map of voltage-time-electrical resistance dependence of the PCRAM cell. The colour scale represents the change in resistance of the PCRAM cell. The plot has three distinct regions: 1, high resistance state (red); 2, intermediate resistance state (green); and 3, low resistance state (blue).
Fig. 2. (a) The atomic layer sequence for FCC Ge2Sb2Te5 in a hexagonal setting. Electronic band structure of the crystalline Ge2Sb2Te5 slab in the FCC phase (b) without electric field (E-field?=?0?eV/?), and (c) with electric field (E-field?=?0.01?eV/?). The electric field has no significant effect on band gap.
Fig. 3. Simulated temperature profile of the half cross-section of a planer pore structure PCRAM cell. Temperature profiles of the cell with different applied voltages: (a) 0.5?V (b) 1.5?V (c) 2.0?V, and (d) 2.5?V after a 60?ns pulse. The peak temperature of the phase change component Ge2Sb2Te5 was calculated in the SET state.
Fig. 4. (a) Time-dependent resistance change of the PCRAM cell when a voltage pulse of 2.4?V, 60?ns is applied in the crystalline state. (b) Resistivity change as a function of the memory cell’s temperature. The inset image shows the modelled time-dependent temperature of the memory cell of a 2.4?V, 60?ns voltage pulse.
Fig. 5. (a) Schematic of the ultrashort voltage pulse train applied to the memory cell. (b) Endurance measurement of the SET phase of a PCRAM cell of the voltage pulse of 1.2?V, 10?ns with a 1?μs of pulse separation. The memory cells are reversibly switched up to109 cycles with three times resistance ratio.
[1] |
M. Wuttig, N. Yamada, Nat. Mater. 6 2007 824-832.
DOI URL PMID |
[2] |
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7 2008 653-658.
DOI URL PMID |
[3] |
M. Wuttig, Nat. Mater. 4 2005 265-266.
DOI URL PMID |
[4] |
S. Raoux, D. Ielmini, M. Wuttig, I. Karpov, MRS Bull. 37 2012 118-123.
DOI URL |
[5] |
S. Raoux, D. Ielmini, Chem. Rev. 110 2009 240-267.
DOI URL PMID |
[6] |
A. Kolobov, P. Fons, A. Frenkel, A. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3 2004 703-708.
DOI URL PMID |
[7] |
W. Welnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blugel, M. Wuttig, Nat. Mater. 5 2005 56-62.
DOI URL |
[8] |
S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R. Shelby, M. Salinga, D. Krebs, S.H. Chen, H.L. Lung, C. Lam, IBM J. Res. Dev. 52 2008 465-479.
DOI URL |
[9] |
G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy, J. Vac. Sci. Technol. B 28 (2010) 223-262.
DOI URL |
[10] |
T. Siegrist, P. Merkelbach, M. Wuttig, Annu. Rev. Condens. Matter Phys. 3 2012 215-237.
DOI URL |
[11] |
B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photonics 5 (2011) 141-148.
DOI URL |
[12] |
B.J. Eggleton, Opt. Express 18 (2010) 26632-26634.
DOI URL PMID |
[13] |
V.G. Taeed, N.J. Baker, L. Fu, K. Finsterbusch, M.R. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.Y. Choi, S. Madden, Opt. Express 15 (2007) 9205-9221.
DOI URL PMID |
[14] | D. Lezal, J. Pedlikova, J. Zavadil, J. Optoelectron. Adv. Mater. 6 2004 133-137. |
[15] |
C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H. Pernice, Nat. Photonics 9 (2015) 725-732.
DOI URL |
[16] |
P. Hosseini, C.D. Wright, H. Bhaskaran, Nature 511 (2014) 206-211.
URL PMID |
[17] |
M. Rude, R.E. Simpson, R. Quidant, V. Pruneri, J. Renger, ACS Photonics 2 (2015) 669-674.
DOI URL |
[18] |
W. Wang, D. Loke, L. Shi, R. Zhao, H. Yang, L.T. Law, L.T. Ng, K.G. Lim, Y.C. Yeo, T.C. Chong, Sci. Rep. 2 2012 360.
DOI URL PMID |
[19] | W. Wang, D. Loke, L. Law, L. Shi, R. Zhao, M. Li, L. Chen, H. Yang, Y. Yeo, A. Adeyeye, T.C. Chong, International Electron Devices Meeting (IEDM), 2012 IEEE International (2012) 31-33. |
[20] |
A. Sherchenkov, S. Kozyukhin, A. Babich, P. Lazarenko, J. Non-Cryst. Sol. 377 2013 26-29.
DOI URL |
[21] |
H.S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Proc. IEEE 98 (2010) 2201-2227.
DOI URL |
[22] |
S. Loubriat, D. Muyard, F. Fillot, A. Roule, M. Veillerot, J. Barnes, P. Gergaud, L. Vandroux, M. Verdier, S. Maitrejean, Microelectron. Eng. 88 2011 817-821.
DOI URL |
[23] |
G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T.D. Happ, J.B. Philipp, M. Kund, Appl. Phys. Lett. 95 2009, 043108.
DOI URL |
[24] | X. Zhou, Y. Du, J. Behera, L. Wu, Z. Song, R.E. Simpson, ACS Appl. Mater.Interfaces 31 (2016) 20185-20191. |
[25] |
X. Zhou, W. Dong, H. Zhang, R.E. Simpson, Sci. Rep. 5 2015 11150.
DOI URL PMID |
[26] |
W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, Appl. Phys. Lett. 105 2014, 243113.
DOI URL |
[27] |
K. Chen, C. Cabral, L. Krusin-Elbaum, Microelectron. Eng. 85 2008 2346-2349.
DOI URL |
[28] |
I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, J. Appl. Phys. 87 2000 4130-4134.
DOI URL |
[29] |
T.Y. Yang, I.M. Park, B.J. Kim, Y.C. Joo, Appl. Phys. Lett. 95 2009, 032104.
DOI URL |
[30] |
D. Kang, D. Lee, H.M. Kim, S.W. Nam, M.H. Kwon, K.B. Kim, Appl. Phys. Lett. 95 2009, 011904.
DOI URL |
[31] |
D. Loke, T.H. Lee, W. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336 (2012) 1566-1569.
DOI URL PMID |
[32] |
J. Tominaga, P. Fons, A. Kolobov, T. Shima, T.C. Chong, R. Zhao, H.K. Lee, L. Shi, J. Appl. Phys. 47 2008 5763-5766.
DOI URL |
[33] | R.E. Simpson, P. Fons, A.V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, J. Tominaga, Nat. Nanotecnol. 6 2011 501-505. |
[34] | N. Takaura, T. Ohyanagi, M. Tai, M. Kinoshita, K. Akita, T. Morikawa, H. Shirakawa, M. Araidai, K. Shiraishi, Y. Saito J. Tominaga, in: International Electron Devices Meeting (IEDM), 2014, pp. 29-32. |
[35] |
J. Kalikka, X. Zhou, E. Dilcher, S. Wall, J. Li, R.E. Simpson, Nat. Commun. 7 2016 11983.
DOI URL PMID |
[36] |
X. Zhou, J. Kalikka, X. Ji, L. Wu, Z. Song, R.E. Simpson, Adv. Mater. 28 2016 3007-3016.
DOI URL PMID |
[37] |
X. Zhou, J.K. Behera, S. Lv, L. Wu, Z. Song, R.E. Simpson, Nano Futures 1 (2017), 025003.
DOI URL |
[38] |
L. Waldecker, T.A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R.E. Simpson, R. Ernstorfer, S. Wall, Nat. Mater. 14 2015 991-995.
DOI URL PMID |
[39] |
A.V. Kolobov, M. Krbal, P. Fons, J. Tominaga, T. Uruga, Nat. Chem. 3 2011 311-316.
DOI URL PMID |
[40] |
R.E. Simpson, P. Fons, X. Wang, A. Kolobov, T. Fukaya, J. Tominaga, Appl. Phys. Lett. 97 2010, 161906.
DOI URL |
[41] |
D. Loke, J.M. Skelton, W. Wang, T.H. Lee, R. Zhao, T.C. Chong, S.R. Elliott, Proc. Natl. Acad. Sci. 111 2014 13272-13277.
DOI URL PMID |
[42] | F. Dirisaglik, G. Bakan, A. Faraclas, A. Gokirmak, H. Silva, Int. J. High Speed Electron.Syst. 23 2014, 1450004. |
[43] |
C.D. Wright, L. Wang, P. Shah, M.M. Aziz, E. Varesi, R. Bez, M. Moroni, F. Cazzaniga, IEEE T. Nanotechnol. 10 2011 900-912.
DOI URL |
[44] |
D. Loke, L. Shi, W. Wang, R. Zhao, L.T. Ng, K.G. Lim, H. Yang, T.C. Chong, Y.C. Yeo, Appl. Phys. Lett. 97 2010, 243508.
DOI URL |
[45] |
P. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[46] |
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
DOI URL |
[47] |
G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 1996 15-50.
DOI URL |
[48] |
J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 1996 3865-3868.
DOI URL PMID |
[49] | W. Wang, L. Shi, R. Zhao, D. Loke, K.G. Lim, T.C. Chong, H.K. Lee, T.C. Chong, J. Appl. Phys. 48.4S (2009), 04C060. |
[50] | X. Zhang, Y. Wei, X. Lin, X. Cui, C. Peng, Z. Song, M. Chan, Electron Devices and Solid-State Circuits (EDSSC), 2014 IEEE International Conference (2014) 1-2. |
[51] |
T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nat. Mater. 10 2011 202-208.
DOI URL PMID |
[52] |
C. Chen, P. Jost, H. Volker, M. Kaminski, M. Wirtssohn, U. Engelmann, K. Krueeger, F. Schlich, C. Schlockermann, R.P. Lobo, M. Wuttig, Phys. Rev. B 95 (2017), 094111.
DOI URL |
[53] |
E. Prokhorov, J. Gervacio-Arciniega, G. Luna-Barcenas, Y. Kovalenko, F. Espinoza-Beltran, G. Trapaga, J. Appl. Phys. 113 2013, 113705.
DOI URL |
[54] |
T. Tsafack, E. Piccinini, B.S. Lee, E. Pop, M. Rudan, J. Appl. Phys. 110 2011, 063716.
DOI URL |
[55] |
J.L.F. Da Silva, A. Walsh, S.H. Wei, H. Lee, J. Appl. Phys. 106 2009, 113509.
DOI URL |
[56] |
B.S. Lee, J.R. Abelson, S.G. Bishop, D.H. Kang, B.K. Cheong, K.B. Kim, J. Appl. Phys. 97 2005, 093509.
DOI URL |
[57] |
X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu, C. Peng, D. Yao, S. Song, B. Liu, S. Feng, App. Phys. Lett. 101 2012, 142104.
DOI URL |
[58] | S. Raoux, M. Wuttig, MA, 2009, pp. 99-124. |
[59] | Y. Peter, M. Cardona, Springer Science & Business Media, 2010. |
[60] |
B.S. Lee, J.R. Abelson, S.G. Bishop, D.H. Kang, B.K. Cheong, K.B. Kim, J. Appl. Phys. 97 2005, 093509.
DOI URL |
[61] |
J. Kellner, G. Bihlmayer, M. Liebmann, S. Otto, C. Pauly, J.E. Boschker, V. Bragaglia, S. Cecchi, R.N. Wang, V.L. Deringer, Commun. Phys. 1 2018 5.
DOI URL |
[62] | R.J. Baker, CMOS: Circuit Design, Layout, and Simulation, 1, John Wiley & Sons, 2008. |
[63] | B. Keeth, DRAM Circuit Design: Fundamental and High-Speed Topics, 13, John Wiley & Sons, 2007. |
[1] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[2] | S.H. Lu, D. Wu, R.S. Chen, En-hou Han. Microstructure and texture optimization by static recrystallization originating from {10-12} extension twins in a Mg-Gd-Y alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 44-60. |
[3] | Yu Zhang, Wei Rong, Yujuan Wu, Liming Peng. Achieving ultra-high strength in Mg-Gd-Ag-Zr wrought alloy via bimodal-grained structure and enhanced precipitation [J]. J. Mater. Sci. Technol., 2020, 54(0): 160-170. |
[4] | Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Meiya Li. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 604-609. |
[5] | L.Y. Guo, X. Wang, K.C. Shen, K.B. Kim, S. Lan, X. WangL., W.M. Wang. Structure modification and recovery of amorphous Fe73.5Si13.5B9Nb3Cu1 magnetic ribbons after autoclave treatment: SAXS and thermodynamic analysis [J]. J. Mater. Sci. Technol., 2019, 35(1): 118-126. |
[6] | Changjiu Chen, Kaikin Wong, Rithin P. Krishnan, Lei Zhifeng, Dehong Yu, Zhaoping Lu, Suresh M. Chathoth. Highly collective atomic transport mechanism in high-entropy glass-forming metallic liquids [J]. J. Mater. Sci. Technol., 2019, 35(1): 44-47. |
[7] | Kaimo Deng, Liang Li. Low-Temperature and Surfactant-Free Synthesis of Mesoporous TiO2 Sub-Micron Spheres for Efficient Dye-Sensitized Solar Cells [J]. J. Mater. Sci. Technol., 2016, 32(1): 17-23. |
[8] | Qijin Huang, Wenfeng Shen, Ruiqin Tan, Wei Xu, Weijie Song. Separation of Silver Nanocrystals for Surface-enhanced Raman Scattering Using Density Gradient Centrifugation [J]. J. Mater. Sci. Technol., 2015, 31(8): 834-839. |
[9] | Huizhen Wang, Xiurong Sun, Ping Yang, Weimin Mao, Li Meng. Analysis of the Transformation-induced Plasticity Effect during the Dynamic Deformation of High-manganese Steel [J]. J. Mater. Sci. Technol., 2015, 31(2): 191-198. |
[10] | Bhagaban Behera, Sudhir Chandra. Synthesis and Characterization of ZnO Nanowires and ZnO-CuO Nanoflakes from Sputter-Deposited Brass (Cu0.65-Zn0.35) Film and Their Application in Gas Sensing [J]. J. Mater. Sci. Technol., 2015, 31(11): 1069-1078. |
[11] | Cheng Yang, Youhong Tang, Zijin Su, Zhexu Zhang, Cheng Fang. Preparation of Silver Nanowires via a Rapid, Scalable and Green Pathway [J]. J. Mater. Sci. Technol., 2015, 31(1): 16-22. |
[12] | Lanlan Sun, Dongxu Zhao, Meng Ding, Haifeng Zhao, Zhenzhong Zhang, Binghui Li, Dezhen Shen. One-step Synthesis of Shape-controllable Gold Nanoparticles and Their Application in Surface-enhanced Raman Scattering [J]. J. Mater. Sci. Technol., 2013, 29(7): 613-618. |
[13] | Y.D. Liu, Y.D. Zhang, A. Tidu, L. Zuo. <110> Fiber Texture Evolution of Ferrite Wires during Drawn-torsion and Drawn-annealing-torsion Process [J]. J. Mater. Sci. Technol., 2012, 28(11): 1010-1014. |
[14] | M. Wang,B. Zhang,G.P. Zhang,Q.Y. Yu,C.S. Liu. Effects of Interface and Grain Boundary on the Electrical Resistivity of Cu/Ta Multilayers [J]. J Mater Sci Technol, 2009, 25(05): 699-702. |
[15] | C.U. Mordi,M.A. Eleruja,B.A. Taleatu,G.O. Egharevba,A.V. Adedeji,O.O. Akinwunmi,B. Olofinjana,C. Jeynes,E.O.B. Ajayi. Metal Organic Chemical Vapour Deposited Thin Films of Cobalt Oxide Prepared via Cobalt Acetylacetonate [J]. J Mater Sci Technol, 2009, 25(01): 85-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||