J. Mater. Sci. Technol. ›› 2021, Vol. 89: 122-132.DOI: 10.1016/j.jmst.2021.01.089
Previous Articles Next Articles
Pan Xiea,b, Shucheng Shena, Cuilan Wua,*(
), Jiehua Lib, Jianghua Chena,*(
)
Received:2020-11-30
Revised:2021-01-07
Accepted:2021-01-09
Published:2021-10-30
Online:2021-10-30
Contact:
Cuilan Wu,Jianghua Chen
About author:jhchen123@hnu.edu.cn(J. Chen).Pan Xie, Shucheng Shen, Cuilan Wu, Jiehua Li, Jianghua Chen. Unusual relationship between impact toughness and grain size in a high-manganese steel[J]. J. Mater. Sci. Technol., 2021, 89: 122-132.
Fig. 1. The results of Charpy V-notch impact tests for the high-manganese steels. (a) Appearances of Charpy V-notch impact test specimens after fracture; (b), (c) the impact toughness as a function of grain sizes and testing temperatures, respectively.
Fig. 2. SEM images of the samples with different grain sizes after Charpy impact testing at LNT, -80?°C, RT and 200?°C, respectively. Note that the microstructures of the samples before impact testing are also presented for comparison.
Fig. 3. XRD of the areas close to impact fracture in the samples with different grain sizes at (a) LNT; (b) -80?°C; (c) RT and (d) 200?°C, respectively.
Fig. 4. (a) A typical low magnification TEM micrograph showing the microstructures of the area close to impact site of fracture in the 2.7?μm/LNT sample; (b) a high magnification TEM micrograph showing the SFs.
Fig. 5. (a) A typical low magnification TEM micrograph showing the microstructures of the area close to impact site of fracture in the 47.8?μm/LNT sample. (b) A high magnification TEM micrograph showing the deformation εhcp-twins and SFs. (c) a SAED pattern of the black circle area in (b). Note that the black lines in (b) represent the basal planes of εhcp lamellae and their twins. The SAED pattern in (c) is acquired along the [20]ε zone axis.
Fig. 6. HRTEM images showing two types of twin boundaries in the 47.8?μm/LNT sample viewed along the [20] direction. (a) {102} coherent twin boundaries and BP interfaces; (b) BP and PB interfaces. Green arrows indicate basal SFs within the parent and twin. Note that the inset fast Fourier transformation (FFT) patterns in (a) and (b) show that the angles between the basal planes of the parent and twin are 86.3° and 90°, respectively.
Fig. 7. TEM micrographs showing the microstructures of the area close to impact site of fracture in the 47.8?μm/LNT sample. (a) A typical TEM micrograph showing the intersections of two ε-martensite variants. εhcp-twins and γR-austenite are formed in ε1 laths. (b) and (c) are magnified images of areas marked by “b” and “c” in (a), respectively. (d) Multi-structures produced by the ε-ε intersections, which are rendered by colours. Note that both εhcp-twins and γR-austenite are formed in ε1 and ε2 laths, respectively. (e) Stereographic projection of crystal indices showing ORs of multi-structures.
Fig. 8. Microstructures of the area close to impact fracture in the 47.8?μm/-80?°C sample. (a) A low magnification TEM micrograph and the inset SAED pattern is acquired from the area marked by a circle; (b) A magnified image of an area marked by “b” in (a). (c) and (d) are magnified images of areas marked by “c” and “d” in (b), respectively. Note that the inset FFT pattern in (c) shows ~1.3° deviation from the Pitsch OR.
Fig. 9. Microstructures of the area close to impact fracture in the impact samples deformed at RT. (a) A low magnification TEM micrograph of the 2.7?μm/RT sample; (b) A low magnification TEM micrograph showing the massive lamellae in a 47.8?μm/RT sample; (c) A high magnification bright-field image of lamellae in a 47.8?μm/RT sample; (d) The corresponding SAED patterns of (c); (e) Dark-field image of γ-twins taken with the reflection of (1)γT; (f) Dark-field image of εhcp-martensite taken with the reflection of (011)ε.
| [1] |
Y. Kimura, T. Inoue, F. Yin, K. Tsuzaki, Science 320 (2008) 1057-1060.
DOI PMID |
| [2] |
M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 527 (2010) 7832-7840.
DOI URL |
| [3] |
J.W. Morris Jr, Science 320 (2008) 1022-1023.
DOI PMID |
| [4] |
R. Song, D. Ponge, D. Raabe, Acta Mater. 53 (2005) 4881-4892.
DOI URL |
| [5] |
R. Song, D. Ponge, D. Raabe, R. Kaspar, Acta Mater. 53 (2005) 845-858.
DOI URL |
| [6] |
Y. Fukuda, K. Oh-ishi, Z.Horita, T.G. Langdon, Acta Mater. 50 (2002) 1359-1368.
DOI URL |
| [7] |
Y. Ivanisenko, R.K. Wunderlich, R.Z. Valiev, H.J. Fecht, Scr. Mater. 49 (2003) 947-952.
DOI URL |
| [8] |
S. Takaki, K. Kawasaki, Y. Kimura, , J. Mater. Process. Technol. 117 (2001) 359-363.
DOI URL |
| [9] |
A.A. Karimpoor, K.T. Aust, U. Erb, Scr. Mater. 56 (2007) 201-204.
DOI URL |
| [10] |
J. Liao, M. Hotta, K. Kaneko, K. Kondoh, Scr. Mater. 61 (2009) 208-211.
DOI URL |
| [11] |
V.V. Stolyarov, R.Z. Valiev, Y.T. Zhu, Appl. Phys. Lett. 88 (2006), 041905.
DOI URL |
| [12] |
Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, ISIJ Int. 42 (2002) 1571-1577.
DOI URL |
| [13] |
N. Tsuji, S. Okuno, Y. Koizumi, Y. Minamino, Mater Trans. 45 (2004) 2272-2281.
DOI URL |
| [14] | P.R. Reed, T. Horiuchi, New York, 1983. |
| [15] |
R. Mohammadzadeh, A. Akbari, M. Mohammadzadeh, Metall. Mater. Trans. A 47 (2016) 6032-6041.
DOI URL |
| [16] |
O. Grässel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391-1409.
DOI URL |
| [17] |
G. Frommeyer, U. Brux, P. Neumann, ISIJ Int. 43 (2003) 438-446.
DOI URL |
| [18] |
D.Z. Li, Y.H. Wei, L.F. Hou, G.D. Chu, Mater. Sci. Technol. 28 (2012) 303-310.
DOI URL |
| [19] |
M.A. Meyers, O. Vohringer, V.A. Lubarda, Acta Mater. 49 (2001) 4025-4039.
DOI URL |
| [20] |
R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takeinura, K. Kunishige, Scr. Mater. 59 (2008) 963-966.
DOI URL |
| [21] |
Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, E. Ma, Nature 463 (2010) 335-338.
DOI URL |
| [22] |
H. Idrissi, L. Ryelandt, M. Veron, D. Schryvers, P.J. Jacques, Scr. Mater. 60 (2009) 941-944.
DOI URL |
| [23] |
S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129-5141.
DOI URL |
| [24] | S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387 (2004) 158-162. |
| [25] |
L. Bracke, L. Kestens, J. Penning, Scr. Mater. 57 (2007) 385-388.
DOI URL |
| [26] |
J.B. Seol, J.E. Jung, Y.W. Jang, C.G. Park, Acta Mater. 61 (2013) 558-578.
DOI URL |
| [27] |
P. Xie, C.L. Wu, Y. Chen, J.H. Chen, X.B. Yang, S.Y. Duan, N. Yan, X.A. Zhang, J. Y.Fang , Mater. Des. 80 (2015) 144-151.
DOI URL |
| [28] |
X.S. Yang, S. Sun, X.L. Wu, E. Ma, T.Y. Zhang, Sci. Rep. 4 (2014) 06141.
DOI URL |
| [29] |
A.J. Bogers, W.G. Burgers, Acta Metall. 12 (1964) 255-261.
DOI URL |
| [30] |
G.B. Olson, M. Cohen, J. Less-Common Met. 28 (1972) 107-118.
DOI URL |
| [31] | G.B. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1905-1914. |
| [32] |
X.S. Yang, S. Sun, T.Y. Zhang, Acta Mater. 95 (2015) 264-273.
DOI URL |
| [33] |
S. Matsumoto, A. Sato, T. Mori, Acta Metall. Mater. 42 (1994) 1207-1213.
DOI URL |
| [34] |
X. Zhang, T. Sawaguchi, K. Ogawa, F. Yin, X. Zhao, Philos. Mag. 91 (2011) 4410-4426.
DOI URL |
| [35] |
T. Jian, X.Y. Zhang, W. Jian, Q. Sun, L. Qing, N.T. Carlos, Appl. Phys. Lett. 103 (2013), 051903.
DOI URL |
| [36] |
B.Y. Liu, J. Wang, B. Li, L. Lu, X.Y. Zhang, Z.W. Shan, J. Li, C.L. Jia, J. Sun, E. Ma, Nat. Commun. 5 (2013) 3297.
DOI URL |
| [37] |
P. Xie, S.C. Shen, C.L. Wu, J.H. Chen, , J. Mater. Sci. Technol. 60 (2021) 156-161.
DOI URL |
| [38] |
K. Verbeken, L. Barbe, D. Raabe, ISIJ Int. 49 (2009) 1601-1609.
DOI URL |
| [39] |
S. Mahajan, G.Y. Chin, Acta Metall. 21 (1973) 1353-1363.
DOI URL |
| [40] | S. Kajiwara, Mater. Sci. Eng. A 273 (1999) 67-88. |
| [41] | G.B. Olson, M. Cohen, , Metall. Trans. A 7A (1976) 1897-1904. |
| [42] |
Y.K. Lee, C.S. Choi, Metall. Mater. Trans. 31 (2000) 355-360.
DOI URL |
| [43] | S.S. Sohn, S. Hong, J. Lee, B.-C. Suh, S.-K. Kim, B.-J. Lee, N.J. Kim, S. Lee, ActaMater. 100 (2015) 39-52. |
| [44] |
S. Lintzen, J. von Appen, B.Hallstedt, R. Dronskowski, J. Alloys. Compd. 577 (2013) 370-375.
DOI URL |
| [45] | K. Datta, R. Delhez, P.M. Bronsveld, J. Beyer, H.J.M.Geijselaers, J. Post, ActaMater. 57 (2009) 3321-3326. |
| [46] |
K. Datta, J. Post, A. Dinsdale, Mater. Sci. Technol. 26 (2010) 559-566.
DOI URL |
| [47] |
D. Geissler, J. Freudenberger, A. Kauffmann, M. Krautz, H. Klauss, A. Voss, J. Eickemeyer L. Schultz, Acta Mater. 59 (2011) 7711-7723.
DOI URL |
| [48] |
I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462.
DOI URL |
| [49] | M.J. Sohrabi, H. Mirzadeh, M.S. Mehranpour, A. Heydarinia, R. Razi, Arch. Civ.Mech. Eng. 19 (2019) 1409-1418. |
| [50] |
M. Soleimani, A. Kalhor, H. Mirzadeh, Mater. Sci. Eng. A 795 (2020) 140023.
DOI URL |
| [1] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
| [2] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
| [3] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
| [4] | Shuo Li, Longfei Ma, Jinkui Fan, Jianping Yang, Qiang Zheng, Baoru Bian, Jian Zhang, Juan Du. High energy product of isotropic bulk Sm-Co/α-Fe(Co) nanocomposite magnet with multiple hard phases and nanoscale grains [J]. J. Mater. Sci. Technol., 2021, 88(0): 183-188. |
| [5] | Fang Wang, Liu He, Xiangguo Zeng, Zhongpeng Qi, Bo Song, Xin Yang. Triaxial tension-induced damage behavior of nanocrystalline NiTi alloy and its dependence on grain size [J]. J. Mater. Sci. Technol., 2021, 77(0): 90-99. |
| [6] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
| [7] | Mi Yan, Shengbo Yi, Xiuyuan Fan, Zhenghua Zhang, Jiaying Jin, Guohua Bai. High-frequency MnZn soft magnetic ferrite by engineering grain boundaries with multiple-ion doping [J]. J. Mater. Sci. Technol., 2021, 79(0): 165-170. |
| [8] | J. Dong, J. Shen, Y.H. Sun, H.B. Ke, B.A. Sun, W.H. Wang, H.Y. Bai. Composition and size dependent torsion fracture of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 153-160. |
| [9] | H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 190-202. |
| [10] | A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao. Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 1-6. |
| [11] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
| [12] | Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51(0): 130-136. |
| [13] | Huan Liu, Chao Sun, Ce Wang, Yuhua Li, Jing Bai, Feng Xue, Aibin Ma, Jinghua Jiang. Improving toughness of a Mg2Ca-containing Mg-Al-Ca-Mn alloy via refinement and uniform dispersion of Mg2Ca particles [J]. J. Mater. Sci. Technol., 2020, 59(0): 61-71. |
| [14] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
| [15] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
