J. Mater. Sci. Technol. ›› 2021, Vol. 83: 34-48.DOI: 10.1016/j.jmst.2020.12.036
• Research Article • Previous Articles Next Articles
Guoqiang Maa,b, Darcy A. Hughesc, Andrew W. Godfreyd, Qiang Chene, Niels Hansena,f, Guilin Wua,g,*()
Received:
2020-08-10
Revised:
2020-10-24
Accepted:
2020-12-06
Published:
2021-01-27
Online:
2021-01-27
Contact:
Guilin Wu
About author:
* Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China. E-mail address: guilinwu@ustb.edu.cn (G. Wu).Guoqiang Ma, Darcy A. Hughes, Andrew W. Godfrey, Qiang Chen, Niels Hansen, Guilin Wu. Microstructure and strength of a tantalum-tungsten alloy after cold rolling from small to large strains[J]. J. Mater. Sci. Technol., 2021, 83: 34-48.
Fig. 1. Orientation distribution functions (ϕ2 = 45° sections) revealing the slow texture evolution with increasing strain for Ta-4% W: (a) 0% c.r., (b) 70 % c.r. and (c) 90 % c.r. and (d) orientation intensity along the α-fiber and γ-fiber at different rolling reductions.
Fig. 2. Deformation microstructures after 10 % c.r. illustrating different morphologies: (a) two sets of GNBs, (b) one set of GNBs, (c) a diffuse cell structure, (d) a diffuse cell structure delineated by GNBs marked by arrows. Dashed lines mark the traces of the indicated crystallographic planes in the TEM images, while in the tracings solid black lines indicate GNBs and dashed gray lines indicate IDBs. Orientations: (a) ND/RD = (-0.66 -0.51 0.55)/[0.75 -0.43 0.50] 6.4° to γ-fiber and 27.6° to α-fiber (b) ND/RD = (-0.96 0.23 0.15)/[-0.25 -0.96 -0.14] 39.3° to γ-fiber and 31.4° to α-fiber, (c) ND/RD = (0.36 0.70 -0.62)/[-0.64 -0.30 -0.71] 14.7° to γ-fiber and 17.8° to α-fiber, (d) ND/RD = (-0.97 0.15 -0.20)/[-0.11 -0.970-0.22] 40.3° to γ-fiber and 32.6° to α-fiber.
Fig. 3. Comparison of (a) diffuse cells showing a magnified view of a region in Fig. 2(c) to a Taylor lattice (b) with dislocations on slip planes as well as nascent cells forming at dislocation tangles after 10 % c.r. For the Taylor lattice the foil plane is (011); primary [11-1] and conjugate [1-11] dislocations are parallel to the foil plane and along gray stripes in the insert schematic. Dashed lines mark the traces of crystallographic planes. Thick banded lines in the insert schematic represent nascent cell walls.
Fig. 4. Deformation microstructure after 30 % c.r. showing more developed cell structures between GNBs: (a) one set of GNBs, (b) two sets of GNBs, (c) diffuse cell structure with some suggestion that GNBs may be forming as shown by the white arrows. Dashed lines mark the traces of crystallographic planes in the TEM images. Orientations: (a) ND/RD = (0.16 -0.49 0.86)/[0.95 0.31 0.01] 29.8° to γ-fiber and 26.9° to α-fiber, (b) ND/RD = (-0.51 0.13 -0.85)/[-0.76 -0.53 0.38] 30.8° to γ-fiber and 24.3° to α-fiber, (c) ND/RD = (-0.96 0.06 -0.29)/[0.05 -0.94 -0.34] 41.1° to γ-fiber and 25.2° to α-fiber.
Fig. 5. Deformation microstructure after 50 % c.r. showing also the emergence of S-bands: (a) one set of GNBs, (b) two sets of GNBs and very short S-bands, (c) two sets of GNBs. Dashed lines mark the traces of crystallographic planes. Orientations: (a) ND/RD = (0.18 -0.47 0.87)/[0.96 0.29 -0.04] 29.4° to γ-fiber and 28.5° to α-fiber, (b) ND/RD = (-0.52 0.65 -0.55)/[-0.85 -0.31 0.44] 5.6° to γ-fiber and 25.1° to α-fiber, (c) ND/RD = (-0.15 -0.91 0.39)/[0.62 0.22 0.75] 33.5° to γ-fiber and 13.6° to α-fiber.
Fig. 6. Deformation microstructure after 70 % c.r. with S-bands occurring more frequently but still widely spaced (dashed arrows indicate the shearing associated with the S-bands).
Fig. 7. TEM images and illustrations of how deformation structure is realigned to the RD by intersecting slip in S-bands after 90 % c.r.: (a) TEM image (corresponding sketch (c)) GNBs in the form of MBs and LBs coexist with S-bands; (b) TEM image (corresponding sketch (d)) GNBs form LBs near the RD. Solid lines indicate GNBs, dashed lines IDBs.
Reduction (%) | One set | Two sets | Taylor lattice/cell structure | Boundaries//{110} | Boundaries//{112} | GNB inclination to RD |
---|---|---|---|---|---|---|
10 | 8 | 8 | 5 | 14 (58.3 %) | 10 (41.7 %) | 38.9±9.4 |
30 | 11 | 19 | 2 | 32 (65.3 %) | 17 (34.7 %) | 35.6±8.9 |
50 | 10 | 5 | 0 | 16 (80 %) | 4 (20 %) | 27.3±11 |
70 | 20.5±7.6 | |||||
90 | 6.7±4.8 |
Table 1 Number of grains at each strain level with either no GNBs (just a Taylor lattice/cell structure), one set of GNBs, or two sets of GNBs. Also indicated is the fraction of GNBs aligned with {110} or {112} planes, and the average inclination angle of GNBs to the RD.
Reduction (%) | One set | Two sets | Taylor lattice/cell structure | Boundaries//{110} | Boundaries//{112} | GNB inclination to RD |
---|---|---|---|---|---|---|
10 | 8 | 8 | 5 | 14 (58.3 %) | 10 (41.7 %) | 38.9±9.4 |
30 | 11 | 19 | 2 | 32 (65.3 %) | 17 (34.7 %) | 35.6±8.9 |
50 | 10 | 5 | 0 | 16 (80 %) | 4 (20 %) | 27.3±11 |
70 | 20.5±7.6 | |||||
90 | 6.7±4.8 |
Reduction (%) | εvM | DavGNB (μm) | θavGNB (°) | DavIDB (μm) | θavIDB (°) | ρavIDB(m-2) |
---|---|---|---|---|---|---|
10 | 0.12 | 0.65 | 0.97 | - | - | 0.53 × 1014a |
30 | 0.41 | 0.44 | 1.62 | 0.62 | 0.79 | 1.8 × 1014 |
50 | 0.80 | 0.31 | 2.13 | 0.57 | 1.12 | 2.8 × 1014 |
70 | 1.4 | 0.22 | 4.29 | 0.47 | 2.01 | 6.1 × 1014 |
90 | 2.7 | 0.13 | 11.86 | 0.37 | 3.14 | 1.2 × 1015 |
Table 2 Average values of microstructural parameters as a function of strain.
Reduction (%) | εvM | DavGNB (μm) | θavGNB (°) | DavIDB (μm) | θavIDB (°) | ρavIDB(m-2) |
---|---|---|---|---|---|---|
10 | 0.12 | 0.65 | 0.97 | - | - | 0.53 × 1014a |
30 | 0.41 | 0.44 | 1.62 | 0.62 | 0.79 | 1.8 × 1014 |
50 | 0.80 | 0.31 | 2.13 | 0.57 | 1.12 | 2.8 × 1014 |
70 | 1.4 | 0.22 | 4.29 | 0.47 | 2.01 | 6.1 × 1014 |
90 | 2.7 | 0.13 | 11.86 | 0.37 | 3.14 | 1.2 × 1015 |
Fig. 9. Cumulative distributions for (a) the spacing between and (b) the misorientation angles across the IDBs. The curves are shifted from right to left with increasing strain for the spacing while they are shifted from left to right with increasing strain for the misorientation angles.
Fig. 10. Cumulative distribution for (a) GNBs spacing and (b) GNBs misorientations. Histograms show the development of high angle GNBs with a second peak in the distribution developing at the largest strain: (c) 70 % c.r. and (d) 90 % c.r.
Fig. 11. Alternating misorientation angles across GNBs with increasing strain indicate the influence of stress screening on dislocation patterning. (a, b) 10 % c.r., (c, d) 30 % c.r. and (e, f) 50 % c.r.
Fig. 14. The probability densities of (a) GNB spacings, (b) GNB misorientation angles, (c) IDB spacings, and (d) IDB misorientation angle at different strain levels collapse into a single function for each parameter when scaled by their individual averages.
Fig. 15. Increasing tungsten content linearly increases the initial lattice friction stress: σ0, which provides the constant value of σ0 = 240 MPa at 4% W used in the flow stress equation.
εvM | σ0 (MPa) | σIDB (MPa) | σGNB (MPa) | σcalculated= σ0+σIDB+σGNB (MPa) | σ0.2% avg. (test1,test2) (MPa) | σUTS avg. (test1,test2) (MPa) |
---|---|---|---|---|---|---|
0 | 240 | 0 | 45 | 285 | 334 ± 20* (341,327) | 439 ± 22* (447,431) |
0.12 | 240 | 74 | 202 | 516 | 511 ± 20* (519,503) | 513 ± 22* (522,504) |
0.41 | 240 | 139 | 245 | 624 | 590 ± 20* (604,576) | 595 ± 22* (612,577) |
0.80 | 240 | 173 | 292 | 705 | 652 ± 20* (663,641) | 656 ± 22* (668,644) |
1.4 | 240 | 255 | 347 | 842 | 762 ± 20* (774,750) | 769 ± 22* (777,760) |
2.7 | 240 | 357 | 451 | 1048 | 960 ± 20* (986,934) | 979 ± 22* (1,007,950) |
Table 3 Calculated flow stresses utilizing the parameters measured in the TEM and experimentally measured values from tensile tests on the rolled samples.
εvM | σ0 (MPa) | σIDB (MPa) | σGNB (MPa) | σcalculated= σ0+σIDB+σGNB (MPa) | σ0.2% avg. (test1,test2) (MPa) | σUTS avg. (test1,test2) (MPa) |
---|---|---|---|---|---|---|
0 | 240 | 0 | 45 | 285 | 334 ± 20* (341,327) | 439 ± 22* (447,431) |
0.12 | 240 | 74 | 202 | 516 | 511 ± 20* (519,503) | 513 ± 22* (522,504) |
0.41 | 240 | 139 | 245 | 624 | 590 ± 20* (604,576) | 595 ± 22* (612,577) |
0.80 | 240 | 173 | 292 | 705 | 652 ± 20* (663,641) | 656 ± 22* (668,644) |
1.4 | 240 | 255 | 347 | 842 | 762 ± 20* (774,750) | 769 ± 22* (777,760) |
2.7 | 240 | 357 | 451 | 1048 | 960 ± 20* (986,934) | 979 ± 22* (1,007,950) |
Fig. 16. Flow stress calculations based on the measured microstructural parameters and Eq. (7) agree very well with the experimentally measured values (blue squares), taken as average values from the two tensile tests at each condition.
[1] |
L.E. Murr, M.A. Meyers, C.S. Niou, Y.J. Chen, S. Pappu, C. Kennedy, Acta Mater. 45 (1997) 157-175.
DOI URL |
[2] |
W.A. Spitzig, T.E. Mitchell, Acta Metall. 14 (1966) 1311-1323.
DOI URL |
[3] | D.A. Hughes, E.N.C. Dalder, Grobstein, in: C.S. Olsen (Ed.), Evolution of Refractory Metals and Alloys, The Minerals, Metals & Materials Society, Warrendale, 1994, pp. 219-235. |
[4] | T.S. Byun, S.A. Maloy, J. Nucl. Phys. Mater. Sci. Radiat. Appl. 377 (2008) 72-79. |
[5] | T.J. Novakowski, A. Sundaram, J.K. Tripathi, S. Gonderman, A. Hassanein, J. Nucl. Phys. Mater. Sci. Radiat. Appl. 504 (2018) 1-7. |
[6] |
T. Zhang, H.W. Deng, Z.M. Xie, R. Liu, J.F. Yang, C.S. Liu, X.P. Wang, Q.F. Fang, Y. Xiong, J. Mater. Sci. Technol. 52 (2020) 29-62.
DOI |
[7] |
S. Wang, Z.H. Wu, M.Y. Xie, D.H. Si, L.Y. Li, C. Chen, Z. Zhang, Y.C. Wu, Mater. Charact. 159 (2020), 110067.
DOI URL |
[8] |
Y. Lv, K. Hu, Z. Huang, Z. Cao, S. Wen, Y. Zhao, M. Pan, H. Deng, Solid State Commun. 306 (2020), 113767.
DOI URL |
[9] |
J. Li, L. Qin, K. Yang, Z. Ma, Y. Wang, L. Cheng, D. Zhao, J. Mater. Sci. Technol. 36 (2020) 190-208.
DOI URL |
[10] |
Y. Liu, S. Liu, C. Deng, H. Fan, X. Yuan, Q. Liu, J. Mater. Sci. Technol. 34 (2018) 2178-2182.
DOI URL |
[11] |
Q. Liu, N. Hansen, Scr. Metall. Mater 32 (1995) 1289-1295.
DOI URL |
[12] |
T. Huang, L. Shuai, A. Wakeel, G. Wu, N. Hansen, X. Huang, Acta Mater. 156 (2018) 369-378.
DOI URL |
[13] |
Q. Liu, X. Huang, D.J. Lloyd, N. Hansen, Acta Mater. 50 (2002) 3789-3802.
DOI URL |
[14] |
W. Chrominski, L. Olejnik, A. Rosochowski, M. Lewandowska, Mater. Sci. Eng. A 636 (2015) 172-180.
DOI URL |
[15] |
M. Lipinska, W. Chrominski, L. Olejnik, J. Golinski, A. Rosochowski, M. Lewandowska, Metall. Mater. Trans. A 48 (2017) 4871-4882.
DOI URL |
[16] |
D.A. Hughes, N. Hansen, Acta Mater. 48 (2000) 2985-3004.
DOI URL |
[17] |
D.A. Hughes, N. Hansen, Acta Mater. 148 (2018) 374-383.
DOI URL |
[18] |
G.L. Wu, A. Godfrey, G. Winther, D. Juul Jensen, Q. Liu, Acta Mater. 59 (2011) 5451-5461.
DOI URL |
[19] | S. Deng, A. Godfrey, O.V. Mishin, N. Hansen, X. Huang, Microstructural Evolution and Strength of Copper During Cold Rolling to Large Strain, in: Proceeding of the 35th Risø International Symposium on Materials Science, Technical University of Denmark, 2014, pp. 251-258. |
[20] |
V.S. Ananthan, T. Leffers, N. Hansen, Scr. Metall. Mater 25 (1991) 137-142.
DOI URL |
[21] |
B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, N. Hansen, Acta Mater. 52 (2004) 1069-1081.
DOI URL |
[22] |
B.L. Li, W.Q. Cao, Q. Liu, W. Liu, Mater. Sci. Eng. A 356 (2003) 37-42.
DOI URL |
[23] |
A. Haldar, X. Huang, T. Leffers, N. Hansen, R.K. Ray, Acta Mater. 52 (2004) 5405-5418.
DOI URL |
[24] |
L. Zhang, Z. Chen, Y. Wang, G. Ma, T. Huang, G. Wu, D.J. Jensen, Scr. Mater. 141 (2017) 111-114.
DOI URL |
[25] | A.S. Malin, M. Hatherly, Met. Sci. 13 (1979) 463-472. |
[26] | A.S. Keh, S. Weissmann, Electron Microscopy and Strength of Crystals, 1963, pp. 231-299. |
[27] |
G. Langford, M. Cohen, Metall. Mater. Trans. B 1 (1970) 1478-1480.
DOI URL |
[28] |
D. Kuhlmann-Wilsdorf, N. Hansen, Scr. Metall. Mater 25 (1991) 1557-1562.
DOI URL |
[29] |
J.A. Wert, Q. Liu, N. Hansen, Acta Metall. Mater 43 (1995) 4153-4163.
DOI URL |
[30] |
D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A 113 (1989) 1-41.
DOI URL |
[31] |
D. Kuhlmann-Wilsdorf, Phys Stat Sol 149 (1995) 225-241.
DOI URL |
[32] |
D.A. Hughes, Acta Metall. Mater 41 (1993) 1421-1430.
DOI URL |
[33] | D.A. Hughes, N. Hansen, Philos. Mag. Abingdon (Abingdon) 83 (2003) 3871-3893. |
[34] |
Q. Liu, D. Juul Jensen, N. Hansen, Acta Mater. 46 (1998) 5819-5838.
DOI URL |
[35] | X. Huang, G. Winther, Philos. Mag. Abingdon (Abingdon) 87 (2007) 5189-5214. |
[36] | G. Winther, X. Huang, Philos. Mag. Abingdon (Abingdon) 87 (2007) 5215-5235. |
[37] |
P. Cizek, Acta Mater. 58 (2010) 5820-5833.
DOI URL |
[38] |
J. Zhang, G.Q. Ma, A. Godfrey, D.Y. Shu, Q. Chen, G.L. Wu, IOP. Conf. Ser. Mater. Sci. Eng. 219 (2017), 012051.
DOI URL |
[39] |
G. Ma, Q. He, X. Luo, G. Wu, Q. Chen, Materials 12 (2018) 117.
DOI URL |
[40] |
Q. Liu, Ultramicroscopy 60 (1995) 81-89.
DOI URL |
[41] | M. Knezevic, I.J. Beyerlein, M.L. Lovato, C.N. Tomé, A.W. Richards, R.J. McCabe, Int.J. Plast. 62 (2014) 93-104. |
[42] |
G. Ma, G. Wu, W. Shi, S. Xiang, Q. Chen, X. Mao, Corros. Sci. 176 (2020), 108924.
DOI URL |
[43] |
B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Acta Metall. Mater 40 (1992) 205-219.
DOI URL |
[44] | G.I. Taylor, Proc. Royal Soc. London 145 (1934) 362-387. |
[45] | G.I. Taylor, J. Inst. Met. 62 (1938) 307-324. |
[46] | S.M. Ohr, D.N. Beshers, Philos. Mag. Abingdon (Abingdon) 10 (1964) 219-230. |
[47] | H.G.F. Wilsdorf, D. Kuhlmann-Wilsdorf, J.Nucl. Phys. Mater. Sci. Radiat. Appl. 5 (1962) 178-192. |
[48] |
K. Yasunaga, M. Iseki, M. Kiritani, Mater. Sci. Eng. A 350 (2003) 76-80.
DOI URL |
[49] |
R.J. Arsenault, Acta Metall. 14 (1966) 831-838.
DOI URL |
[50] |
F. Louchet, L.P. Kubin, Phys Stat Sol 56 (1979) 169-176.
DOI URL |
[51] | D.A. Hughes, N. Hansen, Metall. Trans. A 24 (1993) 2021-2037. |
[52] |
D.A. Hughes, N. Hansen, Acta Mater. 45 (1997) 3871-3886.
DOI URL |
[53] |
W.T. Read, W. Shockley, Phys. Rev. 78 (1950) 275-289.
DOI URL |
[54] |
A. Godfrey, D.A. Hughes, Mater. Charact. 48 (2002) 89-99.
DOI URL |
[55] |
N. Hansen, X. Huang, G. Winther, Metall. Mater. Trans. A 42 (2011) 613-625.
DOI URL |
[56] |
N.G. Kioussis, N.M. Ghoniem, J. Comput. Theor. Nanos. 7 (2010) 1317-1346.
DOI URL |
[57] | D. Kuhlmann Wilsdorf, Trans. Met. Soc. AIME 224 (1962) 1047-1061. |
[58] |
N. Hansen, D.A. Hughes, Phys Stat Sol 149 (1995) 155-172.
DOI URL |
[59] |
D.A. Hughes, D.C. Chrzan, Q. Liu, N. Hansen, Phys. Rev. Lett. 81 (1998) 4664-4667.
DOI URL |
[60] |
A. Godfrey, D.A. Hughes, Acta Mater. 48 (2000) 1897-1905.
DOI URL |
[61] |
E.O. Hall, Proc. Phys. Soc. London B 64 (1951) 747-753.
DOI URL |
[62] | N.J. Petch, J. Iron Steel Inst. 174 (1953) 25-28. |
[63] | R.W. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, Philos. Mag. Abingdon (Abingdon) 7 (1962) 45-58. |
[64] |
J.T. Al-Haidary, N.J. Petch, E.R. De Los Rios, Philos. Mag. 47 (1983) 869-890.
DOI URL |
[65] | N. Hansen, Flow Stress and Microstructural Parameters, in: Proceedings of the 15th Risø International Symposium on Materials Science: Numerical Predictions of Deformation Processes and the Behavior of Real Materials, Risø National Laboratory, Roskilde, Denmark, 1994, pp. 325-334. |
[66] | R. Labusch, Phys. Status Solidi B 41 (1970) 659-669. |
[67] |
R. Labusch, J. Appl. Phys. 48 (1977) 4550-4556.
DOI URL |
[68] |
R.L. Fleisgher, Acta Metall. 9 (1961) 996-1000.
DOI URL |
[69] |
F.R.N. Nabarro, Philos. Mag. 35 (1977) 613-622.
DOI URL |
[70] |
R.C. Koo, J. Less Common Met. 4 (1962) 138-144.
DOI URL |
[71] |
L.A. Gypen, A. Deruyttere, Metall. Trans. A 13 (1982) 1015-1020.
DOI URL |
[72] |
S.R. Chen, G.T. Gray, Metall. Mater. Trans. A 27 (1996) 2994-3006.
DOI URL |
[73] |
D.H. Lassila, A. Goldberg, R. Becker, Metall. Mater. Trans. A 33 (2002) 3457-3464.
DOI URL |
[74] | G.T. Gray, S.R. Bingert, S.I. Wright, S.R. Chen, in: MRS Online Proceedings Library Archive, 1993, pp. 322. |
[75] |
L.A.I. Kestens, H. Pirgazi, Mater. Sci. Tech-Lond 32 (2016) 1303-1315.
DOI URL |
[76] | J.M. Rosenberg, H.R. Piehler, Metall. Trans. 2 (1971) 257-259. |
[77] |
B. Jóni, E. Schafler, M. Zehetbauer, G. Tichy, T. Ungár, Acta Mater. 61 (2013) 632-642.
DOI URL |
[78] | S.N. Mathaudhu, K. Ted Hartwig, Mater. Sci. Eng. A 426 (2006) 128-142. |
[79] | W.B. Morrison, W.C. Leslie, Metall. Mater. Trans. B 4 (1973) 379-381. |
[80] | L.A. Gypen, E. Aernoudt, A. Deruyttere, Res. Mech. 7 (1983) 1-19. |
[81] |
D. Raabe, Mater. Sci. Eng. A 197 (1995) 31-37.
DOI URL |
[82] |
J.L. Raphanel, P. van Houtte, Acta Metall. 33 (1985) 1481-1488.
DOI URL |
[1] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
[2] | Sainan Liu, Hongtai Shen, Jiawei Xu, Xiaojun Zhou, Jianfei Liu, Zhenyang Cai, Xiaojun Zhao, Lairong Xiao. Preparation of a tantalum-based MoSi2-Mo coating resistant to ultra-high-temperature thermal shock by a new two-step process [J]. J. Mater. Sci. Technol., 2021, 81(0): 117-122. |
[3] | Junlei Li, Ling Qin, Ke Yang, Zhijie Ma, Yongxuan Wang, Liangliang Cheng, Dewei Zhao. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. J. Mater. Sci. Technol., 2020, 36(0): 190-208. |
[4] | Wandong Xing, Zijie Wei, Rong Yu, Fanyan Meng. Prediction of stable high-pressure structures of tantalum nitride TaN2 [J]. J. Mater. Sci. Technol., 2019, 35(10): 2297-2304. |
[5] | Qinggang Meng, Chunguang Bai, Dongsheng Xu. Flow behavior and processing map for hot deformation of ATI425 titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34(4): 679-688. |
[6] | Menglei Sun, Yu Jiang, Jiangfeng Ni, Liang Li. Application of materials based on group VB elements in sodium-ion batteries: A review [J]. J. Mater. Sci. Technol., 2018, 34(11): 1969-1976. |
[7] |
Yahui Liu, Shifeng Liu, Chao Deng, Haiyang Fan, Xiaoli Yuan, Qing Liu.
Inhomogeneous deformation of {111} |
[8] | Chen Q., Shu D.Y., Lin J., Wu Y., Xia X.S., Huang S.H., Zhao Z.D., Mishin O.V., Wu G.L.. Evolution of microstructure and texture in copper during repetitive extrusion-upsetting and subsequent annealing [J]. J. Mater. Sci. Technol., 2017, 33(7): 690-697. |
[9] | S.Ramanathan, R.Karthikeyan, V.Deepak Kumar, G.Ganesan. Hot Deformation Behavior of 2124 Al Alloy [J]. J Mater Sci Technol, 2006, 22(05): 611-615. |
[10] | Hanwei HE, Kechao ZHOU, Xiang XIONG. A Novel Method for Preparation of TaC Coating on C/C Composite Material [J]. J Mater Sci Technol, 2005, 21(03): 381-385. |
[11] | Yan CHENG, Wei CAI, Liancheng ZHAO. Surface Composition and Corrosion Property of TiNi Alloys Coated with Tantalum Films [J]. J Mater Sci Technol, 2004, 20(04): 474-476. |
[12] | Y.Y.Yang, M.Mahfouf, D.A.Linkens. Parameter Optimisation of Stress-strain Constitutive Equations Using Genetic Algorithms [J]. J Mater Sci Technol, 2003, 19(Supl.): 5-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||