J. Mater. Sci. Technol. ›› 2021, Vol. 83: 18-33.DOI: 10.1016/j.jmst.2020.12.026
• Research Article • Previous Articles Next Articles
Y.M. Rena,b, X. Linb,*(), H.O. Yangb, H. Tanb, J. Chenb, Z.Y. Jiana, J.Q. Lib, W.D. Huangb,*(
)
Received:
2020-12-02
Accepted:
2020-12-13
Published:
2021-01-27
Online:
2021-01-27
Contact:
X. Lin,W.D. Huang
About author:
huang@nwpu.edu.cn (W.D. Huang).Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue[J]. J. Mater. Sci. Technol., 2021, 83: 18-33.
Fig. 1. Schematic of (a) laser solid forming and (b) deposited parts for fatigue samples, optical microscopy and TEM foil position. Note (b1) is the deposited cuboid parts, (b2) is the cut direction, fractured LCF specimen and TEM foil position, (b3) is four small deposited parts for OM observation, (b4) is the real deposited V1500 part, and (b5) is the OM observation position corresponding to (b4).
Laser Power(W) | Diameter of laser (mm) | Scanning velocity (mm/min) | Feed rate (g/min) | Overlap (%) | Layer thickness (mm) | |
---|---|---|---|---|---|---|
Exp. 1 | 7600 | 6 | 300 | 3 | 40 | 0.8 |
Exp. 2 | 7600 | 6 | 600 | 9 | 40 | 0.8 |
Exp. 3 | 7600 | 6 | 900 | 9 | 40 | 0.8 |
Exp. 4 | 7600 | 6 | 1500 | 9 | 40 | 0.8 |
Table 1 Deposition parameters of LSF process.
Laser Power(W) | Diameter of laser (mm) | Scanning velocity (mm/min) | Feed rate (g/min) | Overlap (%) | Layer thickness (mm) | |
---|---|---|---|---|---|---|
Exp. 1 | 7600 | 6 | 300 | 3 | 40 | 0.8 |
Exp. 2 | 7600 | 6 | 600 | 9 | 40 | 0.8 |
Exp. 3 | 7600 | 6 | 900 | 9 | 40 | 0.8 |
Exp. 4 | 7600 | 6 | 1500 | 9 | 40 | 0.8 |
Fig. 2. Schematic of the microstructure features measurement for (a) prior-β grains and (b) α laths of deposited Ti-6Al-4 V parts. Note that the width of beta grains (d1,d2,…, dn) was measured 15 times (according to the number of horizontal line, L1 to L15), and the width of alpha laths was measured 3 times.
Fig. 6. Geometry integrity of the as-deposited Ti-6Al-4 V parts at four different scanning velocities: (a) Deposited cuboid images, (b) Geometry integrity values. Note that the Vreal and Vtheoretical represent the real and theoretical volume of the deposited parts, respectively.
Fig. 9. Low cycle fatigue properties of LSF Ti-6Al-4 V. (a) LCF data [20], the comparable region denotes the fatigue life is comparable to their wrought standard, (b) Coffin-Manson equation curves. Note that the LCF data was derived from [20] and Ti-6Al-4 V wrought standard from [42].
Fig. 10. TEM micrographs of heat-treated deposited Ti-6Al-4 V subjected to LCF. (a) V900 sample with Δε/2 = 0.65 % shows few dislocations and an α + (β+αs) microstructure. Micrographs of V900 with Δε/2 = (b) 1.1 % and (c) 1.7 %; V1500 with Δε/2 = (d) 0.65 %, (e) 1.1 %, and (f) 1.7 %. (g) Bright-field TEM micrograph of V900 sample with Δε/2 = 0.65 %, showing an α + (β+αs) microstructure. (h) Dark-field TEM micrographs corresponding to (g) using the $(01\bar{1}0)\text{ }\!\!\alpha\!\!\text{ }$reflection, and (i) the SAD pattern corresponding to the dashed circle in (g).
Fig. 11. Bright-field TEM micrographs showing dislocation substructures in the heat-treated deposited V900 (left) and V1500 (right) after LCF loading: Δε/2 = (a, b) 0.65 %, (c, d) 1.1 %, and (e, f) 1.7 %. Insets: SAD patterns of the TEM micrographs. The letter g denotes dislocations under a certain reflection vector. The hollow arrows denote dislocation dipoles.
Samples | Zone axis, Z | Reflection vector, g | Dislocation type | Figure |
---|---|---|---|---|
V900-0.65% | [$2\bar{1}\bar{1}0$] | [$02\bar{2}1$] | Single dislocation | |
V1500-0.65% | [$7\bar{2}\bar{5}6$] | [$02\bar{2}1$] | Single dislocation | |
V900-1.1% | [$\bar{4}5\bar{1}6$] | [$01\bar{1}\bar{1}$] | Dislocation dipoles | |
V1500-1.1% | [$10\bar{1}0$] | [$1\bar{2}14$] | Dislocation dipoles | |
V900-1.7% | [$11\bar{2}\bar{1}$] | [$10\bar{1}3$] | Tangled dislocations | |
V1500-1.7% | [$11\bar{2}9$] | [$\bar{1}100$] | Tangled dislocations |
Table 2 Dislocation substructures of fatigue samples under different strain amplitudes and scanning speeds.
Samples | Zone axis, Z | Reflection vector, g | Dislocation type | Figure |
---|---|---|---|---|
V900-0.65% | [$2\bar{1}\bar{1}0$] | [$02\bar{2}1$] | Single dislocation | |
V1500-0.65% | [$7\bar{2}\bar{5}6$] | [$02\bar{2}1$] | Single dislocation | |
V900-1.1% | [$\bar{4}5\bar{1}6$] | [$01\bar{1}\bar{1}$] | Dislocation dipoles | |
V1500-1.1% | [$10\bar{1}0$] | [$1\bar{2}14$] | Dislocation dipoles | |
V900-1.7% | [$11\bar{2}\bar{1}$] | [$10\bar{1}3$] | Tangled dislocations | |
V1500-1.7% | [$11\bar{2}9$] | [$\bar{1}100$] | Tangled dislocations |
Fig. 12. Bright-field TEM micrographs of V1500 fatigued at Δε/2 = 1.7 %. (a) TEM micrograph showing dislocation walls in the fatigue sample. (b) A schematic of the dislocation wall in (a), where DFZ denotes the dislocation-free zone. (c) SFs and dislocation network in fatigued V1500. (d) TEM micrographs showing SFs with well-defined fringes.
Fig. 13. Schematic of the (a) typical slip planes and direction of hexagonal close packed structure and (b-d) hexagonal dislocation networks formation. Note that the basal, prismatic, pyramidal I, pyramidal II, < a > and < a + c > denote {0001}, $\left\{ 10\bar{1}0 \right\}$, $\left\{ 10\bar{1}1 \right\}$, $\left\{ 11\bar{2}2 \right\}$, $<11\bar{2}0>$ and $<11\bar{2}3>$, respectively.
Fig. 14. Microcrack initiation sites at the surface of V900 with Δε/2 = 1.7 %. (a-e) Different surface positions showing microcracks initiated within aligned α phases. (f) Cross-sectional micrograph of the fatigue sample; inset: schematic of the microcrack positions. The white hollow arrows denote fatigue microcracks; the white filled arrows in (a) denote the side surface of the fatigue sample. (g) Schematic of a microcrack initiated at ~45° to the horizontal direction along the α/β interface, and (h) preferred orientation of aligned α laths at ~45° to the vertical direction. Note that the loading denotes cyclic loading.
Fig. 15. Fatigue crack initiation site of the V900 with Δε/2 = 0.8 %, Nf = 2520 cycles. (a) macrograph of fracture surface, (b) magnification image of crack origin region marked b in (a), showing numerous unmelt powders, (c) near the crack origin region, showing facet features, and (d) micrograph of propagation region, showing a large number of fatigue striations.
Fig. 17. Fatigue crack initiation and propagation process of deposited Ti-6Al-4 V parts with Δε/2 = 0.65 %. (a-e) Fracture morphology at different positions in a fatigue sample. (f) Fracture macro-morphology. The letters (a-e) represent different positions and their enlarged images corresponding to (a-e) in (f). Stage I, II, and III denote fatigue crack initiation, propagation, and final sudden fracture regions, respectively.
Fig. 18. Schematic of the fatigue failure mechanism in LSF Ti-6Al-4 V under LCF loading: (a) before loading, (b) microcracks initiating along the α/β interfaces, (c) dominant crack formation, (d) fatigue crack growth early in stage II, (e) fatigue crack growth later in stage II, (f) a macrograph of the fatigue sample cut from a cross section, and (g) a macro-fractograph of the fatigue sample. Note that the loading direction is vertical in (b-g).
Fig. 19. A suggestion for improving the LCF lives of deposited parts. (a) schematic of the relationship between tensile properties and LCF properties, (b) relationship between input energy density and tensile properties. Note that YS, δ, E, As-D fine, and As-D coarse denote yield strength, elongation to failure, linear energy density, as-deposited part with fine grains and as-deposited part with coarse grains, respectively.
[1] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[2] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
[3] |
S.Y. Liu, Y.C. Shin, Mater. Des. 164 (2019), 107552.
DOI URL |
[4] | R. Molaei, A. Fatemi, N. Sanaei, J. Pegues, N. Shamsaei, S. Shao, P. Li, D.H. Warner, N. Phan, Int. J. Fatigue 132 (2020), 105363. |
[5] |
J.J. Lewandowski, M. Seifi, Annu. Rev. Mater. Res. 46 (2016) 151-186.
DOI URL |
[6] | N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, Addit. Manuf. 8 (2015) 12-35. |
[7] |
A. Yadollahi, N. Shamsaei, Int. J. Fatigue 98 (2017) 14-31.
DOI URL |
[8] | Y.R. Choi, S.D. Sun, Q. Liu, M. Brandt, M. Qian, Int. J. Fatigue 130 (2020), 105236. |
[9] |
J. Pegues, M. Roach, R.S. Williamson, N. Shamsaei, Int. J. Fatigue 116 (2018) 543-552.
DOI URL |
[10] | O. Oyelola, P. Crawforth, R. M’Saoubi, A.T. Clare, Addit. Manuf. 19 (2018) 39-50. |
[11] | R. Biswal, A.K. Syed, X. Zhang, Addit. Manuf. 23 (2018) 433-442. |
[12] |
H. Yu, F. Li, Z. Wang, X. Zeng, Int. J. Fatigue 120 (2019) 175-183.
DOI URL |
[13] | V.-D. Le, E. Pessard, F. Morel, S. Prigent, Int. J. Fatigue 140 (2020), 105811. |
[14] | D. Ren, S. Li, H. Wang, W. Hou, Y. Hao, W. Jin, R. Yang, R.D.K. Misra, L.E. Murr, J. Mater. Sci. Technol. 35 (2019) 285-294. |
[15] |
S. Bressan, F. Ogawa, T. Itoh, F. Berto, Int. J. Fatigue 126 (2019) 155-164.
DOI URL |
[16] |
P. Li, D.H. Warner, A. Fatemi, N. Phan, Int. J. Fatigue 85 (2016) 130-143.
DOI URL |
[17] |
P. Li, D.H. Warner, J.W. Pegues, M.D. Roach, N. Shamsaei, N. Phan, Int. J. Fatigue 120 (2019) 342-352.
DOI PMID |
[18] |
R. Molaei, A. Fatemi, N. Phan, Int. J. Fatigue 117 (2018) 352-370.
DOI URL |
[19] |
Z. Liu, Z.B. Zhao, J.R. Liu, L. Wang, S.X. Zhu, G. Yang, S.L. Gong, Q.J. Wang, R. Yang, J. Mater. Sci. Technol. 35 (2019) 2552-2558.
DOI |
[20] |
Y.M. Ren, X. Lin, P.F. Guo, H.O. Yang, H. Tan, J. Chen, J. Li, Y.Y. Zhang, W.D. Huang, Int. J. Fatigue 127 (2019) 58-73.
DOI URL |
[21] |
A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, D.W. Seely, Mater. Sci. Eng. A 655 (2016) 100-112.
DOI URL |
[22] | S. Suresh, Fatigue of Materials, 2 ed., Cambridge University Press, 1998. |
[23] |
A. Pineau, D.L. McDowell, E.P. Busso, S.D. Antolovich, Acta Mater. 107 (2016) 484-507.
DOI URL |
[24] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[25] | R. Boyer, G. Welsch, E.W. Codings, Materials Properties Handbook: Titanium Alloys, ASM International, 1994. |
[26] |
C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Acta Mater. 145 (2018) 413-428.
DOI URL |
[27] |
M. Gaumann, C. Bezencon, P. Canalis, W. Kurz, Acta Mater. 49 (2001) 1051-1062.
DOI URL |
[28] |
S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, J. Mater. Process. Technol. 178 (2006) 135-142.
DOI URL |
[29] |
P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian, H.L. Fraser, Annu. Rev. Mater. Res. 46 (2016) 63-91.
DOI URL |
[30] |
F.R. Kaschel, M. Celikin, D.P. Dowling, J. Mater. Process. Technol. 278 (2020), 116539.
DOI URL |
[31] | R. Sabban, S. Bahl, K. Chatterjee, S. Suwas, Acta Mater. (2019) 239-254. |
[32] |
P. Kumar, U. Ramamurty, Acta Mater. 169 (2019) 45-59.
DOI URL |
[33] |
P. Guo, X. Lin, J. Liu, J. Xu, J. Li, Y. Zhang, X. Lu, N. Qu, H. Lan, W. Huang, Corros. Sci. 177 (2020), 109036.
DOI URL |
[34] |
H. Tan, M. Guo, A.T. Clare, X. Lin, J. Chen, W. Huang, J. Mater. Sci. Technol. 35 (2019) 2027-2037.
DOI |
[35] | Y. Zhai, D.A. Lados, E.J. Brown, G.N. Vigilante, Addit. Manuf. 27 (2019) 334-344. |
[36] |
Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W.D. Huang, Acta Mater. 132 (2017) 82-95.
DOI URL |
[37] | S.M.J. Razavi, B.V. Hooreweder, F. Berto, Addit. Manuf. 36 (2020), 101426. |
[38] |
A. Basak, S. Das, Annu. Rev. Mater. Res. 46 (2016) 125-149.
DOI URL |
[39] |
H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Prog. Mater. Sci. 116 (2021), 100703.
DOI URL |
[40] |
G.P. Dinda, L. Song, J. Mazumder, Metall. Mater. Trans. A 39 (2008) 2914-2922.
DOI URL |
[41] |
S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41 (2010) 3422-3434.
DOI URL |
[42] | China Aeronautical Materials Handbook, Vol 4: Titanium Alloys and Copper Alloys, 2nd ed., China Standards Press, 2001. |
[43] |
L. Xiao, Y. Umakoshi, Metall. Mater. Trans. A 35 (2004) 2845-2852.
DOI URL |
[44] |
R. Ding, J. Gong, A.J. Wilkinson, I.P. Jones, Acta Mater. 76 (2014) 127-134.
DOI URL |
[45] |
C. Tan, X. Li, Q. Sun, L. Xiao, Y. Zhao, J. Sun, Int. J. Fatigue 75 (2015) 1-9.
DOI URL |
[46] |
S.G. Song, G.T. Gray, Philos. Mag. 71 (2006) 263-274.
DOI URL |
[47] |
P.O. Tympel, T.C. Lindley, E.A. Saunders, M. Dixon, D. Dye, Acta Mater. 103 (2016) 77-88.
DOI URL |
[48] |
X. Wang, P. Vo, M. Jahazi, S. Yue, Metall. Mater. Trans. A 38 (2007) 831-839.
DOI URL |
[49] |
F. Briffod, A. Bleuset, T. Shiraiwa, M. Enoki, Acta Mater. 177 (2019) 56-67.
DOI |
[50] |
C.C. Wojcik, K.S. Chan, D.A. Koss, Acta Mater. 36 (1988) 1261-1270.
DOI URL |
[51] |
B. Torries, A.J. Sterling, N. Shamsaei, S.M. Thompson, S.R. Daniewicz, Rapid Prototyping J. 22 (2016) 817-825.
DOI URL |
[52] |
S.M.J. Razavi, F. Berto, Adv. Eng. Mater. 21 (2019), 1900220.
DOI URL |
[53] |
P. Gauthier, H.D. Rabaudy, J. Auvinet, Eng. Fract. Mech. 5 (1973) 977-981.
DOI URL |
[54] |
R.J. He, H.M. Wang, Mater. Sci. Eng. A 527 (2010) 1933-1937.
DOI URL |
[55] |
P. Åkerfeldt, R. Pederson, M.-L. Antti, Int. J. Fatigue 87 (2016) 245-256.
DOI URL |
[56] |
A. Noroozi, G. Glinka, S. Lambert, Int. J. Fatigue 27 (2005) 1277-1296.
DOI URL |
[57] |
K. Sadananda, A. Vasudevan, Int. J. Fatigue 27 (2005) 1255-1266.
DOI URL |
[58] |
J.R. Rice, J. Appl. Mech. 34 (1967) 287-298.
DOI URL |
[59] | L.F. Coffin, Trans. Am. Soc. Mech. Eng. 76 (1954) 931-950. |
[60] | S.S. Manson, Behavior of Materials under Conditions of Thermal Stress, in: National Advisory Commission on Aeronautics: Report 1170, Lewis Flight Propulsion Laboratory, 1954. |
[61] | O.H. Basquin, Proc. ASTM, West Conshohocken, PA, USA, 1910, pp. 625-630. |
[62] |
S.M. Yusuf, N. Gao, Mater. Sci. Technol. 33 (2017) 1269-1289.
DOI URL |
[63] |
M. Thomas, G.J. Baxter, I. Todd, Acta Mater. 108 (2016) 26-35.
DOI URL |
[64] |
W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater. 85 (2015) 74-84.
DOI URL |
[1] | Dan Liu, Hongying Yang, Jianhui Li, Jiaqi Li, Yizhe Dong, Chuntian Yang, Yuting Jin, Lekbach Yassir, Zhong Li, David Hernandez, Dake Xu, Fuhui Wang, Jessica A. Smith. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2021, 79(0): 101-108. |
[2] | Baoru Bian, Li Jin, Qiang Zheng, Fang Wang, Xiaohong Xu, Juan Du. Exchange-coupled nanocomposites with novel microstructure and enhanced remanence by a new approach [J]. J. Mater. Sci. Technol., 2021, 79(0): 118-122. |
[3] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[4] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[5] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[6] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
[7] | Guoqiang Ma, Darcy A. Hughes, Andrew W. Godfrey, Qiang Chen, Niels Hansen, Guilin Wu. Microstructure and strength of a tantalum-tungsten alloy after cold rolling from small to large strains [J]. J. Mater. Sci. Technol., 2021, 83(0): 34-48. |
[8] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[9] | Hongge Li, Yongjiang Huang, Jianfei Sun, Yunzhuo Lu. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 187-195. |
[10] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
[11] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[12] | Ya Zhao, Yonghua Sun, Weiwei Lan, Zhong Wang, Yi Zhang, Di Huang, Xiaohong Yao, Ruiqiang Hang. Self-assembled nanosheets on NiTi alloy facilitate endothelial cell function and manipulate macrophage immune response [J]. J. Mater. Sci. Technol., 2021, 78(0): 110-120. |
[13] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[14] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[15] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||