J. Mater. Sci. Technol. ›› 2021, Vol. 92: 40-50.DOI: 10.1016/j.jmst.2021.03.041
• Research Article • Previous Articles Next Articles
Yuchen Chia, Feng Chena, Hangning Wanga, Fengxiang Qina,*(), Haifeng Zhangb,*(
)
Received:
2021-01-14
Revised:
2021-03-05
Accepted:
2021-03-31
Published:
2021-11-30
Online:
2021-05-08
Contact:
Fengxiang Qin,Haifeng Zhang
About author:
hfzhang@imr.ac.cn (H. Zhang).Yuchen Chi, Feng Chen, Hangning Wang, Fengxiang Qin, Haifeng Zhang. Highly efficient degradation of acid orange II on a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method[J]. J. Mater. Sci. Technol., 2021, 92: 40-50.
Fig. 3. TEM image (a), HRTEM images of the red square marked area in a (b), and blue square marked area in b (c), as well as structure model of lattice disorders in α-Fe (d). The inset in (a) is SAED pattern.
Fig. 5. Chronoamperometric responses of AM-FeSiB electrode (a) and NP-FeSiB electrode (b) during AO II degradation under pulsed square-wave and constant potentials.
Fig. 6. UV-vis spectra of AO II vs time (a-c) and normalized concentration (Ct/C0) vs time (d) during the degradation process by NP-FeSiB electrodes under pulsed square-wave and constant potentials.
Sample | Fraction of Fe 2p (%) | Fraction of O 1 s (%) | ||||
---|---|---|---|---|---|---|
Fe3+ | Fe2+ | Fe0 | H2O | OH- | OM | |
AM-FeSiB | - | 83.6 | 16.4 | 21.9 | 50.1 | 28.0 |
AM-FeSiB | ||||||
(reacted with AO II) | 85.1 | 14.9 | - | 13.2 | 44.6 | 42.2 |
NP-FeSiB | 95.5 | 4.1 | 0.4 | 65.6 | 30.4 | 4.0 |
NP-FeSiB | ||||||
(reacted with AO II) | 66.6 | 33.4 | - | 9.9 | 40.9 | 49.2 |
Table 1 Relative fractions of Fe 2p and O 1 s in different valences for AM-FeSiB and NP-FeSiB ribbons before and after degradation of AO II.
Sample | Fraction of Fe 2p (%) | Fraction of O 1 s (%) | ||||
---|---|---|---|---|---|---|
Fe3+ | Fe2+ | Fe0 | H2O | OH- | OM | |
AM-FeSiB | - | 83.6 | 16.4 | 21.9 | 50.1 | 28.0 |
AM-FeSiB | ||||||
(reacted with AO II) | 85.1 | 14.9 | - | 13.2 | 44.6 | 42.2 |
NP-FeSiB | 95.5 | 4.1 | 0.4 | 65.6 | 30.4 | 4.0 |
NP-FeSiB | ||||||
(reacted with AO II) | 66.6 | 33.4 | - | 9.9 | 40.9 | 49.2 |
Fig. 13. Effect of 4-HBA (a) and H2O2 concentration (b) on the electrochemical degradation of AO Ⅱ by NP-FeSiB electrodes under the pulsed square-wave potential.
[1] | F.L. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review, J.Hazard. Mater. 267 (2014) 194-205. |
[2] | P. Li, Y. Song, S. Wang, Z. Tao, S.L. Yu, Y.N. Liu, Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hy-drodynamic cavitation, Ultrason.Sonochem. 22 (2015) 132-138. |
[3] | Z.Y. Lv, X.J. Liu, B. Jia, H. Wang, Y. Wu, Z.P. Lu, Development of a novel high-en-tropy alloy with eminent efficiency of degrading azo dye solutions, Sci.Rep. 6 (2016) 34213. |
[4] | Y.T. Lin, C.H. Weng, F.Y. Chen, Effective removal of AB24 dye by nano/micro-size zero-valent iron, Sep.Purif. Technol. 64 (2008) 26-30. |
[5] | Y. Segura, F. Martínez, J.A. Melero, J.L.G Fierro, Zero valent iron (ZVI) medi-ated Fenton degradation of industrial wastewater: treatment performance and characterization of final composites, Chem.Eng. J. 269 (2015) 298-305. |
[6] | Y. He, J.F. Gao, F.Q. Feng, C. Liu, Y.Z. Peng, S.Y. Wang, The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron, Chem.Eng. J. 179 (2012) 8-18. |
[7] | Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, Surface aging behaviour of Fe-based amorphous alloys as catalysts during het-erogeneous photo Fenton-like process for water treatment, Appl.Catal. B-Env-iron. 204 (2017) 537-547. |
[8] | Y. Tang, Y. Shao, N. Chen, X. Liu, S.Q. Chen, K.F. Yao, Insight into the high reac-tivity of commercial Fe-Si-B amorphous zero-valent iron in degrading azo dye solutions, RRSC Adv 5 (2015) 34032-34039. |
[9] | F. Wang, H. Wang, H.F. Zhang, Z.H. Dan, N. Weng, W.Y. Tang, F.X. Qin, Superior azo-dye degradation of Fe-Si-B-P amorphous powders with graphene oxide addition, J. Non-Cryst. Solids 491 (2018) 34-42. |
[10] | S.H. Xie, P. Huang, J.J. Kruzic, X.R. Zeng, H.X. Qian, A highly efficient degrada-tion mechanism of methyl orange using Fe-based metallic glass powders, Sci.Rep. 6 (2016) 21947. |
[11] | X.D. Qin, Z.K. Li, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, H.W. Zhang, H.F. Zhang, Mechanism and kinetics of treatment of acid orange II by aged Fe-Si-B metallic glass powders, J.Mater. Sci. Technol. 33 (2017) 1147-1152. |
[12] | J. Jiang, G.H. Li, Z.T. Li, X. Zhang, F. Zhang, An Fe-Mn binary oxide (FMBO) modified electrode for effective electrochemical advanced oxidation at neutral pH, Electrochim. Acta 194 (2016) 104-109. |
[13] | D.D. Xu, X.Z. Song, W.Z. Qi, H. Wang, Z.Y. Bian, Degradation mechanism, ki-netics, and toxicity investigation of 4-bromophenol by electrochemical reduc-tion and oxidation with Pd-Fe/graphene catalytic cathodes, Chem.Eng. J. 333 (2018) 477-485. |
[14] | C.Q. Zhang, Z.W. Zhu, H.F. Zhang, Effects of the addition of Co, Ni or Cr on the decolorization properties of Fe-Si-B amorphous alloys, J. Phys. Chem. Solids 110 (2017) 152-160. |
[15] | S.Q. Chen, G.N. Yang, S.T. Luo, S.J. Yin, J.L. Jia, Z. Li, S.H. Gao, Y. Shao, K.F. Yao, Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition, J. Mater. Chem. A 5 (2017) 14230-14240. |
[16] | P.P. Wang, J.Q. Wang, J.T. Huo, W. Xu, X.M. Wang, G. Wang, Fast degradation of azo dye by nanocrystallized Fe-based alloys, Sci.China Phys. Mech. 60 (2017) 82-86. |
[17] | S.X. Liang, Z. Jia, Y.J. Liu, W.C. Zhang, W.M. Wang, J. Lu, L.C. Zhang, Compelling Rejuvenated Catalytic Performance in Metallic Glasses, Adv.Mater. 30 (2018) 1802764. |
[18] | J.C. Qiao, J.M. Pelletier, Dynamic Mechanical Relaxation in Bulk Metallic Glasses: a Review, J.Mater. Sci. Technol. 30 (2014) 523-545. |
[19] | L.C. Zhang, Z. Jia, F.C. Lyu, S.X. Liang, J. Lu, A review of catalytic performance of metallic glasses in wastewater treatment: recent progress and prospects, Prog.Mater. Sci. 105 (2019) 100576. |
[20] | S.X. Liang, X.Q. Wang, W.C. Zhang, Y.J. Liu, W.M. Wang, L.C. Zhang, Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability, Appl. Mater. Today 19 (2020) 100543. |
[21] | S.X. Liang, Z. Jia, W.C. Zhang, X.F. Li, W.M. Wang, H.C. Lin, L.C. Zhang, Ultrafast activation efficiency of three peroxides by Fe78Si9B13 metallic glass under pho-to-enhanced catalytic oxidation: a comparative study, Appl.Catal. B-Environ. 221 (2018) 108-118. |
[22] | X.D. Qin, Z.W. Zhu, G. Liu, H.M. Fu, H.W. Zhang, A.M. Wang, H. Li, H.F. Zhang, Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass, Sci.Rep. 5 (2015) 18226. |
[23] | M. Ramya, M. Karthika, R. Selvakumar, Baldev Raj, K.R. Ravi, A facile and efficient single step ball milling process for synthesis of partially amorphous Mg-Zn-Ca alloy powders for dye degradation, J. Alloys Compd. 696 (2017) 185-192. |
[24] | N. Weng, F. Wang, F.X. Qin, W.Y. Tang, Z.H. Dan, Enhanced Azo-Dyes Degra-dation Performance of Fe-Si-B-P Nanoporous Architecture, Materials (Basel) 10 (2017) 1001. |
[25] | Q.Y. Zhang, S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, L.C. Zhang, Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons, J.Mater. Sci. Technol. 61 (2021) 159-168. |
[26] | S.X. Liang, Q.Y. Zhang, Z. Jia, W.C. Zhang, W.M. Wang, L.C. Zhang, Tailoring surface morphology of heterostructured iron-based Fenton catalyst for highly improved catalytic activity, J.Colloid Interface Sci. 581 (2021) 860-873. |
[27] | C. Yang, C. Zhang, L. Liu, Excellent degradation performance of 3D hierarchical nanoporous structures of copper towards organic pollutants, J. Mater. Chem. A 6 (2018) 20992-21002. |
[28] | X.H. Zhang, Y.Q. Zeng, L. Yin, J.Q. Jiang, Y. Pan, R. Li, L. Liu, T. Li, L.C. Chan, Formation of micro/nano pits with high catalytic activity on Fe80B20 amorphous alloy, Corros.Sci. 141 (2018) 109-116. |
[29] | P. Kariyajjanavar, N. Jogttappa, Y.A. Nayaka, Studies on degradation of reactive textile dyes solution by electrochemical method, J.Hazard. Mater. 190 (2011) 952-961. |
[30] | X.D. Qin, Z.K. Li, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, H.W. Zhang, H.F. Zhang, Fe-based metallic glass: an efficient and energy-saving electrode material for electrocatalytic degradation of water contaminants, J.Mater. Sci. Technol. 34 (2018) 2290-2296. |
[31] | P. Sakthisharmila, P.N. Palanisamy, P. Manikandan, Removal of benzidine based textile dye using different metal hydroxides generated in situ electrochemical treatment-A comparative study, J.Clean. Prod. 172 (2018) 2206-2215. |
[32] | D.G. Bassyouni, H.A. Hamad, E-S.Z. El-Ashtoukhy, N.K. Amin, M.M. Abd El-Latif, Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aque-ous medium, J.Hazard. Mater. 335 (2017) 178-187. |
[33] | H. Song, J. Shang, T. Zhu, J.H. Ye, Q. Li, F. Teng, The improved photoelectro-catalytic degradation of rhodamine B driven by the half-rectified square wave,Electrochim. Acta 102 (2013) 375-380. |
[34] | S.H. Li, Y. Zhao, J. Chu, W.W. Li, H.Q. Yu, G. Liu, Electrochemical degradation of methyl orange on Pt-Bi/C nanostructured electrode by a square-wave potential method, Electrochim. Acta 92 (2013) 93-101. |
[35] | E. Hoseinzadeh, A. Rezaee, Electrochemical degradation of RB19 dye using low-frequency alternating current: effect of a square wave, RSC Adv 5 (2015) 96918-96926. |
[36] | C.Q. Fu, L.J. Xu, Z.H. Dan, A. Makino, N. Hara, F.X. Qin, H. Chang, Structural Inheritance and Redox Performance of Nanoporous Electrodes from Nanocrys-talline Fe85.2B10-14P0-4Cu0.8 Alloys, Nanomaterials 7 (2017) 141. |
[37] | Y.C. Dong, D.M. Zeng, Z.H. Xu, C.Q. Fu, Z.H. Dan, F.X. Qin, H. Chang, Nanoporous electrodes of phase-dealloyed Fe83.3-xCoxSi4B8P4Cu0.7 (x = 4,10 and 20 at.%) precursors with superior Redox performances and high stabilities, Mater. Charact. 169 (2020) 110658. |
[38] | X.W. Wu, F. Chen, M. Huang, Z.H. Dan, F.X. Qin, Ni-decorated ZrAlCo-O nan-otube arrays with ultrahigh sensitivity for non-enzymatic glucose sensing, Electrochim. Acta 311 (2019) 201-210. |
[39] | M. Pourbaix, in: Atlas of Electrochemical Equilibria in Aqueous Solutions, Na-tional Association of Corrosion Engineers, Houston, 1974, pp. 307-321. |
[40] | V.K. Sandhwar, B. Prasad, Comparative study of electrochemical oxidation and electrochemical Fenton processes for simultaneous degradation of phthalic and para-toluic acids from aqueous medium, J. Mol. Liq. 243 (2017) 519-532. |
[41] | F. Li, L.L. Zhang, C. Hu, X.C. Xing, B. Yan, Y.W. Gao, L. Zhou, Enhanced azo dye decolorization through charge transmission by σ-Sb3+-azo complexes on amorphous Sb2S3 under visible light irradiation, Appl.Catal. B-Environ. 240 (2019) 132-140. |
[42] | H.S. El-Desoky, M.M. Ghoneim, N.M. Zidan, Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fen-ton oxidation, Desalination 264 (2010) 143-150. |
[43] | Y.L. Hu, Y. Lu, G.J. Zhou, X.H. Xia, A simple electrochemical method for the determination of hydroxyl free radicals without separation process, Talanta 74 (2008) 760-765. |
[44] | M.Q. Cai, Q. Wang, G. Wells, D.D. Dionysiou, Z.J. Song, M.C. Jin, J.Q. Hu, S.H. Ho, R.Y. Xiao, Z.S. Wei, Improving dewaterability and filterability of waste acti-vated sludge by electrochemical Fenton pretreatment, Chem.Eng. J. 362 (2019) 525-536. |
[45] | Z. Deng, X.H. Zhang, K.C. Chan, L. Liu, T. Li, Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation, Chemosphere 174 (2017) 76-81. |
[1] | L.T. Zhang, Y.J. Duan, T. Wada, H. Kato, J.M. Pelletier, D. Crespo, E. Pineda, J.C. Qiao. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass [J]. J. Mater. Sci. Technol., 2021, 83(0): 248-255. |
[2] | Ning Liu, Heng Ma, Lu Wang, Yan Zhao, Zhumabay Bakenov, Xin Wang. Dealloying-derived nanoporous deficient titanium oxide as high-performance bifunctional sulfur host-catalysis material in lithium-sulfur battery [J]. J. Mater. Sci. Technol., 2021, 84(0): 124-132. |
[3] | Ruihua Qiao, Junming Gou, Tianzi Yang, Yiqun Zhang, Feng Liu, Shanshan Hu, Tianyu Ma. Enhanced damping capacity of ferromagnetic Fe-Ga alloys by introducing structural defects [J]. J. Mater. Sci. Technol., 2021, 84(0): 173-181. |
[4] | Ziyan Zhao, Juan Mu, Haifeng Zhang, Yandong Wang, Yang Ren. Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites [J]. J. Mater. Sci. Technol., 2021, 79(0): 212-221. |
[5] | Feilong Wang, Dawei Yin, Jingwang Lv, Shan Zhang, Mingzhen Ma, Xinyu Zhang, Riping Liu. Effect on microstructure and plastic deformation behavior of a Zr-based amorphous alloy by cooling rate control [J]. J. Mater. Sci. Technol., 2021, 82(0): 1-9. |
[6] | Chang-Yu Hung, Yu Bai, Nobuhiro Tsuji, Mitsuhiro Murayama. Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel: Advanced TEM investigations [J]. J. Mater. Sci. Technol., 2021, 86(0): 192-203. |
[7] | Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase [J]. J. Mater. Sci. Technol., 2021, 62(0): 203-213. |
[8] | Wei Guo, Zhihui Yu, Wenting Wei, Zhenghua Meng, Huajie Mao, Lin Hua. Effect of film types on thermal response, cellular structure, forming defects and mechanical properties of combined in-mold decoration and microcellular injection molding parts [J]. J. Mater. Sci. Technol., 2021, 92(0): 98-108. |
[9] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[10] | Xin Wang, Jun Wang, Bin Wei, Nan Zhang, Junyuan Xu, Hongwei Miao, Lifeng Liu, Chenliang Su, Ying Li, Zhongchang Wang. Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 78(0): 170-175. |
[11] | Yifei Xu, Lars P.H. Jeurgens, Peter Schützendübe, Shengli Zhu, Yuan Huang, Yongchang Liu, Zumin Wang. Effect of atomic structure on preferential oxidation of alloys: amorphous versus crystalline Cu-Zr [J]. J. Mater. Sci. Technol., 2020, 40(0): 128-134. |
[12] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[13] | Zhuowei Tan, Liuyang Yang, Dalei Zhang, Zhenbo Wang, Frank Cheng, Mingyang Zhang, Youhai Jin. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49(0): 186-201. |
[14] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[15] | Qiyang Tan, Yingang Liu, Zhiqi Fan, Jingqi Zhang, Yu Yin, Ming-Xing Zhang. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 34-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||