J. Mater. Sci. Technol. ›› 2021, Vol. 82: 1-9.DOI: 10.1016/j.jmst.2020.12.013
• Research Article • Next Articles
Feilong Wang, Dawei Yin, Jingwang Lv, Shan Zhang, Mingzhen Ma*(), Xinyu Zhang, Riping Liu
Received:
2020-10-13
Revised:
2020-11-26
Accepted:
2020-12-05
Published:
2021-01-16
Online:
2021-01-16
Contact:
Mingzhen Ma
About author:
∗ E-mail address: mz550509@ysu.edu.cn (M. Ma).Feilong Wang, Dawei Yin, Jingwang Lv, Shan Zhang, Mingzhen Ma, Xinyu Zhang, Riping Liu. Effect on microstructure and plastic deformation behavior of a Zr-based amorphous alloy by cooling rate control[J]. J. Mater. Sci. Technol., 2021, 82: 1-9.
Mold material | t1/s | T1/K | t2/s | T2/K | t3/s | T3/K |
---|---|---|---|---|---|---|
Refractory steel | 10.00 | 1108 | 10.05 | 1088 | 10.32 | 1063 |
Pure graphite | 10.00 | 1107 | 10.05 | 1085 | 10.27 | 1056 |
Copper | 10.00 | 1109 | 10.06 | 1084 | 10.34 | 1039 |
Table 1 Initial time and temperature recorded during the casting of different molds.
Mold material | t1/s | T1/K | t2/s | T2/K | t3/s | T3/K |
---|---|---|---|---|---|---|
Refractory steel | 10.00 | 1108 | 10.05 | 1088 | 10.32 | 1063 |
Pure graphite | 10.00 | 1107 | 10.05 | 1085 | 10.27 | 1056 |
Copper | 10.00 | 1109 | 10.06 | 1084 | 10.34 | 1039 |
Mold material | σy (MPa) | σm (MPa) | εe (%) | εp (%) |
---|---|---|---|---|
Refractory steel | 1900 | 2011 | 2.3 | 1.2 |
Pure graphite | 2001 | 2073 | 2.5 | 1.7 |
Copper | 1971 | 2082 | 2.4 | 2.6 |
Table 2 Compressive mechanical properties of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy.
Mold material | σy (MPa) | σm (MPa) | εe (%) | εp (%) |
---|---|---|---|---|
Refractory steel | 1900 | 2011 | 2.3 | 1.2 |
Pure graphite | 2001 | 2073 | 2.5 | 1.7 |
Copper | 1971 | 2082 | 2.4 | 2.6 |
Mold material | T0/K | A1/K | A2/K | k1/s | k2/s |
---|---|---|---|---|---|
Refractory steel | 314.7 | 4.9 × 104 | 876.2 | 2.1 | 12.1 |
Pure graphite | 312.2 | 1.9 × 105 | 987.1 | 1.6 | 10.9 |
Copper | 311.1 | 5.1 × 1010 | 1691.7 | 0.5 | 7.4 |
Table 3 Coefficients of cooling equations for samples cast by different molds.
Mold material | T0/K | A1/K | A2/K | k1/s | k2/s |
---|---|---|---|---|---|
Refractory steel | 314.7 | 4.9 × 104 | 876.2 | 2.1 | 12.1 |
Pure graphite | 312.2 | 1.9 × 105 | 987.1 | 1.6 | 10.9 |
Copper | 311.1 | 5.1 × 1010 | 1691.7 | 0.5 | 7.4 |
Fig. 9. IFT-filtered images and FT diffraction patterns of samples cast by different molds: (a-a2) refractory steel mold; (b-b2) pure graphite mold; (c-c2) copper mold. (a-c) are the IFT-filtered images, and the enlarged images of the yellow rectangular area are shown in (a1-c1). (a3-c3) are FT diffraction patterns.
Fig. 11. (a) Fitting curve for the cooling rates and enthalpies of relaxation, (b) fitting curve of enthalpies of relaxation and effective size, (c) fitting curve of enthalpies of relaxation and εp.
[1] | J. Kramer, Z. Phys. J. 106 (1937) 675-691. |
[2] |
A. Peker, W.L. Johnson, Appl. Phys. Lett. 63 (1993) 2342-2344.
DOI URL |
[3] |
A. Inoue, Mater. Trans. JIM 42 (1996) 543-545.
DOI URL |
[4] | A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. 30 (1989) 965-972. |
[5] |
A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mater. Trans. JIM 33 (1992) 937-945.
DOI URL |
[6] |
H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, Z.P. Lu, Prog. Mater. Sci. 103 (2019) 235-318.
DOI |
[7] |
C. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, J. Xu, Scr. Mater. 54 (2006) 1403-1408.
DOI URL |
[8] |
W.L. Johnson, MRS Bull. 24 (1999) 42-56.
DOI URL |
[9] |
A. Inoue, Acta Mater. 48 (2000) 279-306.
DOI URL |
[10] | W.L. Johnson, JOM 54 (2002) 40-43. |
[11] |
C. Byrne, M. Eldrup, Science 321 (2008) 502-503.
DOI URL |
[12] |
X.H. Lin, W.L. Johnson, J. Appl. Phys. 78 (1995) 6514-6519.
DOI URL |
[13] |
S.S. Jiang, K.F. Gan, Y.J. Huang, P. Xue, Z.L. Ning, J.F. Sun, A.H.W. Ngan, Int. J. Plast. 125 (2020) 52-62.
DOI URL |
[14] |
Z.J. Ma, Y.C. Guo, L.T.L. Yeung, P.H. Gao, Z. Yang, X.R. Zeng, J. Alloys. Compd. 648 (2015) 18-21.
DOI URL |
[15] |
W. Dong, H. Zhang, J. Cai, W. Sun, A. Wang, H. Li, Z. Hu, J. Alloys. Compd. 425 (2006) L1-L4.
DOI URL |
[16] |
J. Shen, Y.J. Huang, J.F. Sun, J. Mater. Res. 22 (2007) 3067-3074.
DOI URL |
[17] |
L.Y. Chen, A.D. Setyawan, H. Kato, A. Inoue, G.Q. Zhang, J. Saida, X.D. Wang, Q.P. Cao, J.Z. Jiang, Scr. Mater. 59 (2008) 75-78.
DOI URL |
[18] |
F. Jiang, Y. Zhao, L. Zhang, S. Pan, Y. Zhou, L. He, J. Sun, Adv. Eng. Mater. 11 (2009) 374-379.
DOI URL |
[19] |
M. Nabiałek, Arch. Metall. Mater. 61 (2016) 439-444.
DOI URL |
[20] |
K. Błoch, M. Nabiałek, P. Postawa, A.V. Sandu, A. Śliwa, B. Jeż, Materials 13 (2020) 846.
DOI URL |
[21] |
B. Je˙z, J. Wysłocki, S. Walters, P. Postawa, M. Nabiałek, Materials 13 (2020) 1367.
DOI URL |
[22] | A.P. Chernyshev, Mater. Today Proc. 25 (2020) 370-372. |
[23] |
W. Liao, Y. Zhao, J. He, Y. Zhang, J. Alloys. Compd. 555 (2013) 357-361.
DOI URL |
[24] |
Q. Wang, C.T. Liu, Y. Yang, Y.D. Dong, J. Lu, Phys. Rev. Lett. 106 (2011), 215505.
PMID |
[25] |
M. Calin, J. Eckert, L. Schultz, Scr. Mater. 48 (2003) 653-658.
DOI URL |
[26] |
A.V.D. Beukel, J. Sietsma, Acta. Metall. Mater. 38 (1990) 383-389.
DOI URL |
[27] |
X.X. Yue, C.T. Liu, S.Y. Pan, A. Inoue, P.K. Liaw, C. Fan, Physica B 547 (2018) 48-54.
DOI URL |
[1] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[2] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[3] | Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi [J]. J. Mater. Sci. Technol., 2020, 42(0): 122-129. |
[4] | Yongbiao Wang, Liming Peng, Yanzhou Ji, Xiaoxing Cheng, Cunlong Wang, Yujuan Wu, Yanan Fu, Long-Qing Chen. Effect of cooling rates on the dendritic morphology transition of Mg-6Gd alloy by in situ X-ray radiography [J]. J. Mater. Sci. Technol., 2018, 34(7): 1142-1148. |
[5] | Li Gong, Bo Chen, Long Zhang, Yingche Ma, Kui Liu. Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34(5): 811-820. |
[6] | Guo Hui, Jiang Chuanbin, Yang Baijun, Wang Jianqiang. Deformation behavior of Al-rich metallic glasses under nanoindentation [J]. J. Mater. Sci. Technol., 2017, 33(11): 1272-1277. |
[7] | Huang Yongjiang, Ning Zhiliang, Shen Zhe, Liang Weizhong, Sun Haicao, Sun Jianfei. Bending behavior of as-cast and annealed ZrCuNiAl bulk metallic glass [J]. J. Mater. Sci. Technol., 2017, 33(10): 1153-1158. |
[8] | Weijun Hui, Yongjian Zhang, Chengwei Shao, Silian Chen, Xiaoli Zhao, Han Dong. Effect of Cooling Rate and Vanadium Content on the Microstructure and Hardness of Medium Carbon Forging Steel [J]. J. Mater. Sci. Technol., 2016, 32(6): 545-551. |
[9] | Lei Xu, Ruipeng Guo, Chunguang Bai, Jiafeng Lei, Rui Yang. Effect of Hot Isostatic Pressing Conditions and Cooling Rate on Microstructure and Properties of Ti-6Al-4V Alloy from Atomized Powder [J]. J. Mater. Sci. Technol., 2014, 30(12): 1289-1295. |
[10] | S. Ahmadi, H.R. Shahverdi, S.S. Saremi. Effects of Nb Alloying on Nano-Crystallization Kinetics of Fe55-xCr18Mo7B16C4Nbx(x=0, 3) Bulk Amorphous Alloys [J]. J Mater Sci Technol, 2011, 27(8): 735-740. |
[11] | M. Cheng,S.H. Zhang. Investigation of Micro Formability of Bulk Amorphous Alloy in the Supercooled Liquid State Based on Fluid Flow and Finite Element Analysis [J]. J Mater Sci Technol, 2009, 25(02): 277-280. |
[12] | Zhiliang NING, P.CAO, H.WANG, Jianfei SUN, Diankun LIU. Effect of Cooling Conditions on Grain Size of AZ91 Alloy [J]. J Mater Sci Technol, 2007, 23(05): 645-649. |
[13] | M.Iqbal, J.I.Akhter, Haifeng ZHANG, Zhuangqi HU. Crystallization Behaviour and Mechanical Properties of Zr65Cu18Ni9Al8 Bulk Metallic Glass [J]. J Mater Sci Technol, 2007, 23(05): 693-696. |
[14] | Fengxiang QIN, Haifeng ZHANG, Aimin WANG, Bingzhe DING, Zhuangqi HU. Effect of Pd on GFA and Thermal Stability of Zr-based Bulk Amorphous Alloy [J]. J Mater Sci Technol, 2004, 20(02): 160-163. |
[15] | Qingsheng ZHANG, Shiding WU, Haifeng ZHANG, Bingzhe DING, Zhuangqi HU. Cyclic Fatigue Fracture of Zr55Al10Ni5Cu30 Bulk Amorphous Alloy with Quenched-in Crystallites [J]. J Mater Sci Technol, 2003, 19(01): 13-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||