J. Mater. Sci. Technol. ›› 2021, Vol. 82: 10-20.DOI: 10.1016/j.jmst.2020.11.067
• Research Article • Previous Articles Next Articles
Yujie Chena,b, Xianghai Anc,*(), Sam Zhanga,*(
), Feng Fangd, Wenyi Huod, Paul Munroee, Zonghan Xieb
Received:
2020-09-14
Revised:
2020-11-03
Accepted:
2020-11-04
Published:
2021-01-16
Online:
2021-01-16
Contact:
Xianghai An,Sam Zhang
About author:
samzhang@swu.edu.cn (S. Zhang).Yujie Chen, Xianghai An, Sam Zhang, Feng Fang, Wenyi Huo, Paul Munroe, Zonghan Xie. Mechanical size effect of eutectic high entropy alloy: Effect of lamellar orientation[J]. J. Mater. Sci. Technol., 2021, 82: 10-20.
Fig. 1. (a) The XRD pattern of the CoCrFeNiTa0.395 E-HEA containing a Laves phase and a FCC phase. (b) A secondary-electron SEM image and (c) a low magnification HAADF-STEM image of CoCrFeNiTa0.395 E-HEA. The dark region is the FCC phase and the light platelets are the Laves phase. (d) High-resolution HAADF-STEM image of the inter-phase and the FFT (inset) of FCC phase along the [011] zone axis. (e) High-resolution HAADF-STEM image and corresponding FFT (inset) of the Laves phase along the [0001] zone axis. Superlattice diffraction spots are indicated by red circles in the FFT image. (f) The low magnification HAADF-STEM image of the dual phase lamellar eutectic structure and the corresponding EDX maps.
Co | Cr | Fe | Ni | Ta | |
---|---|---|---|---|---|
FCC phase | 23.7 | 22.6 | 25.1 | 23.2 | 5.4 |
Laves phase | 25.3 | 15.2 | 20.2 | 15.4 | 23.9 |
Table 1 Chemical compositions of the CoCrFeNiTa0.395 E-HEA (at.%).
Co | Cr | Fe | Ni | Ta | |
---|---|---|---|---|---|
FCC phase | 23.7 | 22.6 | 25.1 | 23.2 | 5.4 |
Laves phase | 25.3 | 15.2 | 20.2 | 15.4 | 23.9 |
Fig. 2. (a) Representative true stress-strain curves obtained from the compression tests for E-HEA micropillars with similar diameters (~3 μm), but varying orientations, i.e., the lamellae oriented approximately 0°, 45°, and 90° angles relative to the loading direction. SEM morphologies of pre- and post-compression micropillars with similar diameters (~3 μm), but different orientation angles between the lamellae and the loading direction: (b, c) 0°, (d, e) 45°, and (f, g) 90°.
Orientation | σy (GPa) | Strain hardening rate, θ2% (GPa) |
---|---|---|
0° | 1.27±0.08 | 12.5±0.9 |
45° | 1.14±0.06 | 11.3±1.1 |
90° | 0.89±0.09 | 18.7±1.6 |
Table 2 The flow stress values σy at a plastic strain of 0.2 % are listed for the E-HEA 3 μm-diameter pillars with the lamellae forming approximately 0°, 45°, and 90° angles relative to the loading direction. The strain hardening rate θ at a plastic strain of 2% is also provided to show the strain hardening capacity for comparison purposes. At least 4 pillars were tested for each sample set, and the error bars correspond to the standard deviations (±SD) of the tests.
Orientation | σy (GPa) | Strain hardening rate, θ2% (GPa) |
---|---|---|
0° | 1.27±0.08 | 12.5±0.9 |
45° | 1.14±0.06 | 11.3±1.1 |
90° | 0.89±0.09 | 18.7±1.6 |
Fig. 3. (a) Representative true stress-strain curves for the 0° pillars with diameters ranging from 3.08 μm to 1.01 μm. Note that the curves are shifted along the abscissa for improved clarity. (b) Variations of the yield stress and strain hardening rate at a plastic strain of 2% as a function of the pillar diameter. Typical SEM images of compressed 0° micropillars with different diameters: (c) 3.08 μm, (d) 2.81 μm, (e) 1.68 μm, and (f) 1.01 μm, showing the deformation mode transforming from kinking/buckling to through-sample shear banding as the pillar diameter decreases.
Fig. 4. HAADF STEM images of the post-compressed 0° pillar with a diameter of 3.08 μm showing (a) the local kinking deformation of the Laves lamellae, accommodated by multiple small slip bands within the Laves lamellae. (b) Slip bands are confined inside the Laves lamellae. (c) Slip bands cut through the Laves/FCC interface. (d) A bright field TEM image of the post-compressed 0° pillar with a diameter of 2.81 μm showing the buckling of the Laves phase via profuse slip bands and dislocation accumulation in the FCC phase.
Fig. 5. (a) Representative true stress-strain curves for 45° pillars with diameters ranging from 3.02 μm to 0.42 μm. Note that the curves are shifted along the abscissa for improved clarity. Large strain bursts in the smallest pillar are indicated by black arrows. (b) Variations of the yield stress and strain hardening rate at a plastic strain of 2% as a function of the pillar diameter. Note the strain hardening rates for the sub-micron diameter pillars are not provided because they show negative values. Typical SEM images of compressed 45° micropillars with different diameters: (c) 3.02 μm, (d) 1.61 μm, (e) 1.02 μm, and (f) 0.42 μm, showing that the deformation mode reflected by the level of the FCC extrusion changes as the pillar diameter decreases.
Fig. 6. (a) TEM images of the post-compressed 45° pillar with a diameter of 3.02 μm. (b) Dislocations bands marked by arrows inside the FCC lamellae. (c) A TEM image of the post-compressed 45° pillar with a diameter of 0.42 μm.
Fig. 7. Schematic illustration of deformation modes in the E-HEA pillars with different diameters. (a-c) The deformation mode of 0° pillars transforms from pillar kinking or buckling to large shear banding as the diameter decreases. (d-f) The deformation mode of 45° pillars transforms from shear deformation along the interface to within the FCC lamellae as the diameter decreases.
Fig. 8. (a) SEM images of undeformed (left) and compressed (middle) micropillar with a diameter of 3 μm milled from the monolithic FCC phase sample, and its corresponding uniaxial compressive true stress-strain curve (right). (b) SEM images of undeformed (left) and compressed (middle) micropillar with a diameter of 3.1 μm milled from the monolithic laves phase sample, and its corresponding uniaxial compressive true stress-strain curve (right).
[1] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[2] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[3] |
M. Hasan, Y. Liu, X. An, J. Gu, M. Song, Y. Cao, Y. Li, Y. Zhu, X. Liao, Int. J. Plast. 123 (2019) 178-195.
DOI URL |
[4] | M. Song, R. Zhou, J. Gu, Z.W. Wang, S. Ni, Y. Liu, Appl. Mater. Today 18 (2020), 100498. |
[5] |
S.J. Tsianikas, Y.J. Chen, Z.H. Xie, J. Mater. Sci. Technol. 39 (2020) 7-13.
DOI |
[6] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Acta Mater. 124 (2017) 143-150.
DOI URL |
[7] |
W. Huo, H. Zhou, F. Fang, X. Zhou, Z. Xie, J. Jiang, J. Alloys Compd. 735 (2018) 897-904.
DOI URL |
[8] |
Z. Ding, Q. He, Q. Wang, Y. Yang, Int. J. Plast. 106 (2018) 57-72.
DOI URL |
[9] |
Z. Ding, Q. He, Y. Yang, Sci. China Technol. Sci. 61 (2018) 159-167.
DOI URL |
[10] |
A. Gali, E.P. George, Intermetallics 39 (2013) 74-78.
DOI URL |
[11] |
U. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
[12] |
M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Science 305 (2004) 986-989.
DOI URL |
[13] |
J.R. Greer, J.T.M. De Hosson, Prog. Mater. Sci. 56 (2011) 654-724.
DOI URL |
[14] |
Z.J. Wang, Q.J. Li, Z.W. Shan, J. Li, J. Sun, E. Ma, Appl. Phys. Lett. 100 (2012), 071906.
DOI URL |
[15] |
S.I. Rao, D. Dimiduk, T.A. Parthasarathy, M. Uchic, M. Tang, C. Woodward, Acta Mater. 56 (2008) 3245-3259.
DOI URL |
[16] |
J.R. Greer, W.D. Nix, Phys. Rev. B 73 (2006), 245410.
DOI URL |
[17] |
X. An, Y. Li, S. Ni, Z. Wang, M. Song, Mater. Charact. 164 (2020), 110360.
DOI URL |
[18] |
L. Gao, K. Li, S. Ni, Y. Du, M. Song, J. Mater. Sci. Technol. 61 (2021) 25-32.
DOI URL |
[19] |
I.J. Beyerlein, M.J. Demkowicz, A. Misra, B. Uberuaga, Prog. Mater. Sci. 74 (2015) 125-210.
DOI URL |
[20] |
Y. Zhao, J. Zhang, Y. Wang, K. Wu, G. Liu, J. Sun, Sci. China Mater. 63 (2020) 444-452.
DOI URL |
[21] |
A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao, J. Mater. Sci. Technol. 39 (2020) 1-6.
DOI |
[22] |
K. Gan, A. Ngan, Acta Mater. 151 (2018) 282-292.
DOI URL |
[23] |
Y.J. Chen, X.H. An, Z.F. Zhou, P. Munroe, S. Zhang, X.Z. Liao, Z.H. Xie, Sci. China Mater. 64 (2021) 209-222.
DOI URL |
[24] |
W.D. Nix, J.R. Greer, G. Feng, E.T. Lilleodden, Thin Solid Films 515 (2007) 3152-3157.
DOI URL |
[25] |
Y.J. Chen, X.H. An, X.Z. Liao, Appl. Phys. Rev. 4 (2017), 031104.
DOI URL |
[26] |
C. Mayer, L. Yang, S. Singh, J. Llorca, J. Molina-Aldareguia, Y. Shen, N. Chawla, Acta Mater. 114 (2016) 25-32.
DOI URL |
[27] |
L. Chen, T.E.J. Edwards, F. Di Gioacchino, W.J. Clegg, F.P. Dunne, M.S. Pham, Int. J. Plast. 119 (2019) 344-360.
DOI URL |
[28] |
D. Li, Z.W. Zhu, A.M. Wang, H.M. Fu, H. Li, H.W. Zhang, H.F. Zhang, J. Mater. Sci. Technol. 34 (2018) 708-712.
DOI |
[29] |
S. Lei, J.Y. Zhang, J.J. Niu, G. Liu, X. Zhang, J. Sun, Scr. Mater. 66 (2012) 706-709.
DOI URL |
[30] |
W. Guo, E. Jägle, J.H. Yao, V. Maier, S. Korte-Kerzel, J.M. Schneider, D. Raabe, Acta Mater. 80 (2014) 94-106.
DOI URL |
[31] |
Y. Hu, Q. Guo, L. Zhao, Z. Li, G. Fan, Z. Li, D.B. Xiong, Y. Su, D. Zhang, Scr. Mater. 146 (2018) 236-240.
DOI URL |
[32] |
J. Wang, Q. Zhou, S. Shao, A. Misra, Mater. Res. Lett. 5 (2017) 1-19.
DOI URL |
[33] |
J.R. Greer, W.C. Oliver, W.D. Nix, Acta Mater. 53 (2005) 1821-1830.
DOI URL |
[34] |
L.A. Giannuzzi, F.A. Stevie, Micron 30 (1999) 197-204.
DOI URL |
[35] |
J.Y. Zhang, S. Lei, J. Niu, Y. Liu, G. Liu, X. Zhang, J. Sun, Acta Mater. 60 (2012) 4054-4064.
DOI URL |
[36] | P. Ludwik, Springer, 1909. |
[37] |
M. Kapp, A. Hohenwarter, S. Wurster, B. Yang, R. Pippan, Acta Mater. 106 (2016) 239-248.
DOI URL |
[38] |
Y.J. Chen, X.H. An, X.Z. Liao, Y.W. Mai, Nanotechnology 26 (2015) 435704.
DOI URL |
[39] |
J. Zhang, X. Zhang, R. Wang, S. Lei, P. Zhang, J. Niu, G. Liu, G. Zhang, J. Sun, Acta Mater. 59 (2011) 7368-7379.
DOI URL |
[40] |
M. Nasim, Y.C. Li, M. Wen, C. Wen, J. Mater. Sci. Technol. 50 (2020) 215-244.
DOI URL |
[41] |
Q. Guo, P. Landau, P. Hosemann, Y. Wang, J.R. Greer, Small 9 (2013) 691-696.
DOI URL |
[42] |
Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, A.M. Minor, Nat. Mater. 7 (2008) 115.
PMID |
[43] |
F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Science 318 (2007) 251-254.
DOI URL |
[44] | K.K. Chawla, M.A. Meyers, Cambridge, 1999. |
[45] |
L.W. Yang, C. Mayer, N. Li, J. Baldwin, N.A. Mara, N. Chawla, J.M. Molina-Aldareguia, J. Llorca, Acta Mater. 142 (2018) 37-48.
DOI URL |
[46] |
Z. Wang, R.T. Qu, S. Scudino, B.A. Sun, K.G. Prashanth, D.V. Louzguine-Luzgin, M.W. Chen, Z.F. Zhang, J. Eckert, NPG Asia Mater. 7 (2015), e229-e229.
DOI URL |
[47] |
C.Q. Chen, Y.T. Pei, O. Kuzmin, Z.F. Zhang, E. Ma, J.T.M. De Hosson, Phys. Rev. B 83 (2011), 180201.
DOI URL |
[48] |
M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng, Science 300 (2003) 1275-1277.
DOI URL |
[49] |
M. Kato, Mater. Trans. 55 (2014) 19-24.
DOI URL |
[50] |
H. Huang, X. Li, Z. Dong, W. Li, S. Huang, D. Meng, X. Lai, T. Liu, S. Zhu, L. Vitos, Acta Mater. 149 (2018) 388-396.
DOI URL |
[51] |
Y. Zou, H. Ma, R. Spolenak, Nat. Commun. 6 (2015) 7748.
DOI PMID |
[52] |
J. Llorca, A. Needleman, S. Suresh, Acta Metall. Mater. 39 (1991) 2317-2335.
DOI URL |
[53] |
N. Chawla, D. Singh, Y.-L. Shen, G. Tang, K. Chawla, J. Mater. Sci. 43 (2008) 4383-4390.
DOI URL |
[54] |
C. Mayer, N. Li, N. Mara, N. Chawla, Mater. Sci. Eng. A 621 (2015) 229-235.
DOI URL |
[55] |
S. Lotfian, M. Rodríguez, K. Yazzie, N. Chawla, J. Llorca, J.M. Molina-Aldareguía, Acta Mater. 61 (2013) 4439-4451.
DOI URL |
[56] |
D. Singh, N. Chawla, G. Tang, Y.L. Shen, Acta Mater. 58 (2010) 6628-6636.
DOI URL |
[57] |
R.J. Hemley, H.-k. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland, D. Häusermann, Science 276 (1997) 1242-1245.
DOI URL |
[58] |
B. Devincre, T. Hoc, L. Kubin, Science 320 (2008) 1745-1748.
DOI PMID |
[59] |
G. Tang, Y.L. Shen, D. Singh, N. Chawla, Acta Mater. 58 (2010) 2033-2044.
DOI URL |
[1] | Lu Yang, Zhuo Cheng, Weiwei Zhu, Cancan Zhao, Fuzeng Ren. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure [J]. J. Mater. Sci. Technol., 2021, 73(0): 1-8. |
[2] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[3] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[4] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[5] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[6] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[7] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[8] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
[9] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[10] | Junjie Wang, Shangshu Wu, Shu Fu, Sinan Liu, Zhiqiang Ren, Mengyang Yan, Shuangqin Chen, Si Lan, Horst Hahn, Tao Feng. Nanocrystalline CoCrFeNiMn high-entropy alloy with tunable ferromagnetic properties [J]. J. Mater. Sci. Technol., 2021, 77(0): 126-130. |
[11] | Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 217-233. |
[12] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[13] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[14] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[15] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||