J. Mater. Sci. Technol. ›› 2021, Vol. 92: 31-39.DOI: 10.1016/j.jmst.2021.04.003
• Research Article • Previous Articles Next Articles
Yan Chena,#, Boyuan Goua,#, Xiangdong Dinga,*(), Jun Suna, Ekhard K.H. Saljea,b,*(
)
Received:
2021-02-10
Revised:
2021-04-05
Accepted:
2021-04-06
Published:
2021-11-30
Online:
2021-05-07
Contact:
Xiangdong Ding,Ekhard K.H. Salje
About author:
ekhard@esc.cam.ac.uk (E.K.H. Salje).# These authors contributed equally to this work.
Yan Chen, Boyuan Gou, Xiangdong Ding, Jun Sun, Ekhard K.H. Salje. Real-time monitoring dislocations, martensitic transformations and detwinning in stainless steel: Statistical analysis and machine learning[J]. J. Mater. Sci. Technol., 2021, 92: 31-39.
Fig. 1. X-ray diffraction pattern for low-Ni 316L stainless steel before tension (a) and after tension (tensile strain ~70%) showing the additional martensite α’ peaks (b).
Fig. 2. (a) Stress-strain curve with the AE jerk spectra for low Ni-316L stainless steel sample under tension with a rate of 1×10-2mm/min. AE signals of dislocation movements (b) and martensitic transformations/detwinning-twinning (blue/green) (c). (d) Energy versus amplitude correlations for dislocations (red) and martensites/detwinning-twinning (blue/green) show an exponent x = 2.0. (e) Amplitude versus duration correlations for dislocations (red) and martensites/detwinning-twinning (blue/green). The exponent χ is around 1.5. (f) Energy versus duration correlations for dislocations (red) and martensites/detwinning-twinning (blue/green) show exponent γ close to 3.0.
Fig. 3. Electron Back-Scattered Diffraction for different deformation strain in 316L stainless steel with twins marked in red and martensite marked in blue. (a) Initial sample with 15% twins, (b) 6.6% twins, 0.05% martensites and dislocation slip (identified by the trace line) at 10.2% strain, (c) 6.69% twins, 1.84% martensites and obvious dislocation slip at 25.9% strain, (d) 4.9% twins and 8% martensites at 43.6% strain, (e) 3.8% twins, 51.2% martensites at 67% strain, (f) evolution of twin and martensite during tensile deformation.
Fig. 4. (a) Maximum likelihood (ML) curves with an energy exponent around 1.5 for dislocations, 1.8 for martensitic transformations/detwinning-twinning during the entire deformation process. (b) ML curves for martensitic transformations/detwinning-twinning occur at different strains. The exponents are above 2 for detwinning/twinning for strains <8%, and 1.8 for martensitic transformations for strains >8%. The exponent suggests a weak power law mixing when the strain is below 10%. (c) Probability density function (PDF) of dislocation movement in red and martensitic transformation in blue.
Fig. 5. Probability density function of AE duration for dislocation movements and martensitic transformations with exponents α = 2.5 and 2.3 for the two populations (a); typical profiles for dislocations (b) and martensitic transformations (c) with amplitudes around 130μV, and (d) typical profiles of detwinning/twinning.
Fig. 6. (a) Time sequence of normalized amplitude square of waveforms. The dislocation signals decay slowly with no difference between the elastic and plastic strain regimes. The martensitic transformations show very short lifetimes with a very rapid decay of the AE signals. (b) Histogram of time delays for two AE sensors detecting time difference of the same acoustic signals.
Fig. 7. Waiting time distribution of dislocation movements, martensitic transformations, and their correlations. The mean field power-law decay with 1-φ ~1 is seen only for dislocations. All other correlations follow approximately a Poisson distribution for inter event times greater than 1s.
Deformation mechanism | Duration (μs) |
---|---|
Dislocation motion | 100-7000 |
Martensitic transformation in steel | 10-200 |
Martensitic transformation in shape memory alloy [ | 105-107 |
Twinning [ | 10-104 |
Porous collapse [ | 10-104 |
Crack propagation [ | 104-4×104 |
Table 1 Experimental data and the effect of the sample elongation
Deformation mechanism | Duration (μs) |
---|---|
Dislocation motion | 100-7000 |
Martensitic transformation in steel | 10-200 |
Martensitic transformation in shape memory alloy [ | 105-107 |
Twinning [ | 10-104 |
Porous collapse [ | 10-104 |
Crack propagation [ | 104-4×104 |
Fig. 9. Online monitoring module with the combination of CNN model and statistical analysis for a new data set. (a) As an example, eight waveforms were chosen from those collected by the AE equipment during the course of the experiment. (b) Time dependence of the avalanche energies with predictive label for the dataset. (c) Energy versus maximum amplitude correlation for the same signals as shown in (b). (d) Comparison between the online monitoring module and post-mortem statistical analysis. The blue, green and red dots represent martensitic transformations, detwinning/twinning and dislocation movements predicted by the online monitoring module. The open symbols represent martensitic transformations, detwinning/twinning and dislocation movements by statistical analysis after the measurement. The agreement between the two data sets is excellent.
[1] |
C.C. Du, S.B. Jin, Y. Fang, J. Li, S.Y. Hu, T.T. Yang, Y. Zhang, J.Y. Huang, G. Sha, Y.G. Wang, Z.X. Shang, X.H. Zhang, B.R. Sun, S.W. Xin, T.D. Shen, Nat. Commun. 9 (2018) 5389.
DOI URL |
[2] |
D. Bowden, Y. Krysiak, L. Palatinus, D. Tsivoulas, S. Plana-Ruiz, E. Sarakinou, U. Kolb, D. Stewart, M. Preuss, Nat. Commun. 9 (2018) 1374.
DOI PMID |
[3] |
Y.-L. Song, C.-S. Li, B.-Z. Li, Y.-H. Han, Mater. Sci. Eng. A 742 (2019) 662-671.
DOI URL |
[4] |
S. Bahl, S. Suwas, T. Ungar, K. Chatterjee, Acta Mater 122 (2017) 138-151.
DOI URL |
[5] |
A. Kumar, R.K. Soni, P. Ganesh, R. Kaul, V.K. Bhatnagar, J. Dwivedi, L.M. Kukreja, Mater. Des. 53 (2014) 86-92.
DOI URL |
[6] |
C. Li, B. Ma, Y. Song, J. Zheng, J. Wang, J. Mater. Sci. Technol. 33 (2017) 1572-1576.
DOI URL |
[7] |
M. Shaira, N. Godin, P. Guy, L. Vanel, J. Courbon, Mater. Sci. Eng. A 492 (2008) 392-399.
DOI URL |
[8] |
L. Zhang, S. Takahashi, Y. Kamada, Scr. Mater. 57 (2007) 711-714.
DOI URL |
[9] | A. Holton, E. Walsh, A. Anayiotos, G. Pohost, R. Venugopalan, J. Cardiov, Magn. Reson. 4 (2002) 423-430. |
[10] |
P. Hausild, K. Kolarik, M. Karlik, Mater. Des. 44 (2013) 548-554.
DOI URL |
[11] |
C. Weber, J. Fajans, Rev. Sci. Instrum. 69 (1998) 3695-3696.
DOI URL |
[12] |
L. Zhao, N.H. van Dijk, E. Bruck, J. Sietsma, S. van der Zwaag, Mater. Sci. Eng. A 313 (2001) 145-152.
DOI URL |
[13] |
P. Hausild, V. Davydov, J. Drahokoupil, M. Landa, P. Pilvin, Mater. Des. 31 (2010) 1821-1827.
DOI URL |
[14] |
M. Radu, J. Valy, A.F. Gourgues, F.Le Strat, A. Pineau, Scr. Mater. 52 (2005) 525-530.
DOI URL |
[15] |
J. Garcia-Martin, J. Gomez-Gil, E. Vazquez-Sanchez, Sensors 11 (2011) 2525-2565.
DOI URL |
[16] |
C.C. Ciang, J.R. Lee, H.J. Bang, Meas. Sci. Technol. 19 (2008) 122001.
DOI URL |
[17] |
J. Baro, A. Corral, X. Illa, A. Planes, E.K.H. Salje, W. Schranz, D.E. Soto-Parra, E. Vives, Phys. Rev. Lett. 110 (2013) 088702.
DOI URL |
[18] |
G.F. Nataf, P.O. Castillo-Villa, J. Baro, X. Illa, E. Vives, A. Planes, E.K.H. Salje, Phys. Rev. E 90 (2014) 022405.
DOI URL |
[19] |
X. Jiang, H.L. Liu, I.G. Main, E.K.H. Salje, Phys. Rev. E 96 (2017) 023004.
DOI URL |
[20] |
E.K.H. Salje, H.L. Liu, L.S. Jin, D.Y. Jiang, Y. Xiao, X. Jiang, Appl. Phys. Lett. 112 (2018) 054101.
DOI URL |
[21] |
J. Weiss, W. Ben Rhouma, T. Richeton, S. Dechanel, F. Louchet, L. Truskinovsky, Phys. Rev. Lett. 114 (2015) 105504.
PMID |
[22] |
J. Weiss, T. Richeton, F. Louchet, F. Chmelik, P. Dobron, D. Entemeyer, M. Leby-odkin, T. Lebedkina, C. Fressengeas, R.J. McDonald, Phys. Rev. B 76 (2007) 224110.
DOI URL |
[23] | G. Sparks, Y. Cui, G. Po, Q. Rizzardi, J. Marian, R. Maass, Phys. Rev. Mater. 3 (2019) 080601. |
[24] |
D. Soto-Parra, X.X. Zhang, S.S. Cao, E. Vives, E.K.H. Salje, A. Planes, Phys. Rev. E 91 (2015) 060401.
DOI URL |
[25] | Y. Chen, X.D. Ding, D.Q. Fang, J. Sun, E.K.H. Salje, Sci.Rep. 9 (2019) 1330. |
[26] | Y. Chen, Q.B. Wang, X.D. Ding, J. Sun, E.K.H. Salje, Appl.Phys. Lett. 116 (2020) 111901. |
[27] |
A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51 (2009) 661-703.
DOI URL |
[28] |
E.K.H. Salje, A. Planes, E. Vives, Phys. Rev. E 96 (2017) 042122.
DOI URL |
[29] |
G.F. Nataf, P.O. Castillo-Villa, P. Sellappan, W.M. Kriven, E. Vives, A. Planes, E.K.H. Salje, J. Phys.-Condes. Matter 26 (2014) 275401.
DOI URL |
[30] |
F. Kun, Y. Moreno, R.C. Hidalgo, H.J. Herrmann, Europhys. Lett. 63 (2003) 347-353.
DOI URL |
[31] |
E.K.H. Salje, H.L. Liu, Y. Xiao, L.S. Jin, A. Planes, E. Vives, K.N. Xie, X. Jiang, Phys. Rev. E 99 (2019) 023002.
DOI URL |
[32] |
B. Casals, G.F. Nataf, D. Pesquera, E.K.H. Salje, APL Mater. 8 (2020) 011105.
DOI URL |
[33] | B. Casals, G.F. Nataf, E.K.H. Salje, Nat.Commun. 12 (2021) 345-345. |
[34] |
E. Vives, J. Baro, M.C. Gallardo, J.M. Martin-Olalla, F.J. Romero, S.L. Driver, M.A. Carpenter, E.K.H. Salje, M. Stipcich, R. Romero, A. Planes, Phys. Rev. B 94 (2016) 024102.
DOI URL |
[35] | Y. Chen, B. Gou, W. Fu, C. Chen, E.K.H. Salje, Appl.Phys. Lett. 117 (2020) 262901. |
[36] |
P. Zhang, Y. Yang, Z. Huang, J. Sun, Z. Liao, J. Wang, Y. Yang, Chem. Eng. Sci. 229 (2021) 116083.
DOI URL |
[37] |
H. Liu, S. Liu, Z. Liu, N. Mrad, A.S. Milani, IEEE Trans. Ind. Electron. 68 (2021) 2532-2542.
DOI URL |
[38] | T. Shiraiwa, K. Tamura, M. Enoki, Mater. Sci. Eng. A 768 (2019) 11. |
[39] |
M.L. Linderov, C. Segel, A. Weidner, H. Biermann, A.Y. Vinogradov, Phys. Metals Metallogr. 119 (2018) 388-395.
DOI URL |
[40] |
A. Vinogradov, E. Vasilev, M. Linderov, D. Merson, Mater. Sci. Eng. A 676 (2016) 351-360.
DOI URL |
[41] |
C. Van Steen, L. Pahlavan, M. Wevers, E. Verstrynge, Constr. Build. Mater. 197 (2019) 21-29.
DOI URL |
[42] |
E. Pomponi, A. Vinogradov, Mech. Syst. Signal Proc. 40 (2013) 791-804.
DOI URL |
[43] |
H.A. Sawan, M.E. Walter, B. Marquette, Compos. Sci. Technol. 107 (2015) 89-97.
DOI URL |
[44] |
J.P. McCrory, S.K. Al-Jumaili, D. Crivelli, M.R. Pearson, M.J. Eaton, C.A. Feath-erston, M. Guagliano, K.M. Holford, R. Pullin, Compos. Pt. B-Eng. 68 (2015) 424-430.
DOI URL |
[45] |
N.E. Huang, Z. Shen, S.R. Long, M.L.C. Wu, H.H. Shih, Q.N. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, Proc. R. Soc. A 454 (1998) 903-995.
DOI URL |
[46] |
Y. Yang, Z.K. Peng, W.M. Zhang, G. Meng, Mech. Syst. Signal Proc. 119 (2019) 182-221.
DOI URL |
[47] |
A. Krizhevsky, I. Sutskever, G.E. Hinton, Commun. ACM 60 (2017) 84-90.
DOI URL |
[48] |
L. Zhang, M. Wen, M. Imade, S. Fukuyama, K. Yokogawa, Acta Mater 56 (2008) 3414-3421.
DOI URL |
[49] | S.Y. Zhang, E. Compagnon, B. Godin, A.M. Korsunsky, Mater, Today-Proc 2 (2015) 251-260. |
[50] | H.-S. Noh, J.-H. Kang, K.-M. Kim, S.-J. Kim, Metall. Mater. Trans. A 50A (2019) 616-624. |
[51] |
L.W. McFaul, G. Sparks, J. Sickle, J.T. Uhl, W.J. Wright, R. Maass, K.A. Dahmen, Phys. Rev. E 101 (2020) 053003.
DOI URL |
[52] |
Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo, Mater. Sci. Eng. A 552 (2012) 514-522.
DOI URL |
[53] | H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Nat.Mater. 3 (2004)399-403. |
[54] | N. Zreihan, E. Faran, E. Vives, A. Planes, D. Shilo, Phys. Rev. Mater. 3 (2019) 043603. |
[55] |
L. Carrillo, J. Ortin, Phys. Rev. B 56 (1997) 11508-11517.
DOI URL |
[56] |
J. Baro, K.A. Dahmen, J. Davidsen, A. Planes, P.O. Castillo, G.F. Nataf, E.K.H. Salje, E. Vives, Phys. Rev. Lett. 120 (2018) 245501.
DOI URL |
[57] |
M. Strantza, D. Van Hemelrijck, P. Guillaume, D.G. Aggelis, Mech. Res. Commun. 84 (2017) 8-13.
DOI URL |
[58] |
N. Solomon, I. Solomon, Eng. Fail. Anal. 79 (2017) 865-875.
DOI URL |
[59] | S.C. Olhede, A.T. Walden, IEEE Trans. Ind. Electron. 50 (2002) 2661-2670. |
[60] |
J.M. Lilly, S.C. Olhede, IEEE Trans. Ind. Electron. 57 (2009) 146-160.
DOI URL |
[1] | Chunguang Shen, Chenchong Wang, Pedro E.J.Rivera-Díaz-del-Castillo, Dake Xu, Qian Zhang, Chi Zhang, Wei Xu. Discovery of marageing steels: machine learning vs. physical metallurgical modelling [J]. J. Mater. Sci. Technol., 2021, 87(0): 258-268. |
[2] | Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90(0): 9-19. |
[3] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[4] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[5] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
[6] | Yong Li, David San Martín, Jinliang Wang, Chenchong Wang, Wei Xu. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91(0): 200-214. |
[7] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[8] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[9] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
[10] | Kai Liu, Hai Zeng, Ji Qi, Xiaohua Luo, Xuanwei Zhao, Xianming Zheng, Yuan Yuan, Changcai Chen, Shengcan Ma, Ren Xie, Bing Li, Zhenchen Zhong. Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 76-82. |
[11] | Yongfei Juan, Yongbing Dai, Yang Yang, Jiao Zhang. Accelerating materials discovery using machine learning [J]. J. Mater. Sci. Technol., 2021, 79(0): 178-190. |
[12] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[13] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[14] | X.C. Li, J.X. Zhao, J.H. Cong, R.D.K. Misra, X.M. Wang, X.L Wang, C.J. Shang. Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior [J]. J. Mater. Sci. Technol., 2021, 84(0): 49-58. |
[15] | Edward Charles Henry Crawford O’ Brien, Hemantha Kumar Yeddu. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears [J]. J. Mater. Sci. Technol., 2020, 49(0): 157-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||