J. Mater. Sci. Technol. ›› 2021, Vol. 92: 21-30.DOI: 10.1016/j.jmst.2021.03.034
• Research Article • Previous Articles Next Articles
Fengyou Wanga,b,c, Jinyue Dua, Yuhong Zhanga, Meifang Yanga, Donglai Hand, Lili Yanga,b,c,*(), Lin Fana,b,c, Yingrui Suia,b,c, Yunfei Suna, Jinghai Yanga,b,c,*(
)
Received:
2020-12-24
Revised:
2021-02-22
Accepted:
2021-03-11
Published:
2021-11-30
Online:
2021-05-08
Contact:
Lili Yang,Jinghai Yang
About author:
jhyang1@jlnu.edu.cn (J. Yang).Fengyou Wang, Jinyue Du, Yuhong Zhang, Meifang Yang, Donglai Han, Lili Yang, Lin Fan, Yingrui Sui, Yunfei Sun, Jinghai Yang. Upgraded antisolvent engineering enables 2D@3D quasi core-shell perovskite for achieving stable and 21.6% efficiency solar cells[J]. J. Mater. Sci. Technol., 2021, 92: 21-30.
Fig. 1. The schematic diagram of current two mainstream strategies for constructing the 2D-3D perovskite. The strategy 1 is to mix the 2D- and 3D- perovskite precursors, therefore the final phase distribution is randomly in the hybrid film. The strategy 2 is to sequential deposit the 3D- and 2D- perovskite, which could geometrically separate the 2D- and 3D- phase. However, the solvent in the 2D perovskite precursor can corrode the as-prepared 3D perovskite, thus making the 2D/3D interface to be defects-rich.
Fig. 2. Surface morphology of the perovskite films. (a) Schematic diagram of the upgraded antisolvent process. (b-e) SEM and (f-i) AFM images of the perovskite films prepared by control, M-1, M-3 and M-5 antisolvent, respectively. The RMS roughness values are 25.6, 16.9, 13.3 and 10.4 nm, respectively.
Fig. 3. (a) XRD patterns and (b) the I110/I310 intensity ratios of perovskite films prepared by control, M-1, M-3 and M-5 antisolvent, respectively. The XRD of the PEAI powder was also shown at the bottom. (c) The UV-vis absorption spectra of perovskite films prepared by control, M-1, M-3 and M-5 antisolvent, respectively.
Fig. 4. Analyzing the crystallization process of the films. (a) the absorption and images of the different precursors. (b) TD-XRD patterns of the M-1 film. The temperature is increased from 20 to 100 °C. (c) (200) peak intensity of the PEA2Pb4 under different temperature. (d) Schematic diagram of the crystallization model for the perovskite films. (d) GIXRD patterns of the perovksite film. The incident angle is increased from 0.4° to 2.5°
Fig. 5. (a) The cross-section SEM and linear-scan EDS image of PSCs. (b) XPS spectra of Pb 4f for control, 2D@3D and 2-min etched 2D@3D perovskite films. The right schematic diagram depicts the testing model in this case. (c) Cross-sectional HR-TEM of the perovskite film and the schematic illustration of the 2D@3D- architectured perovskite.
Fig. 6. (a) Dark current-voltage (J-V) curves of the device with Glass/FTO/SnO2/ perovskite/PCBM/Ag configuration. (b) The TPV decay curves of the control and 2D@3D perovskite films. (c, d) TRPL decay and PL spectra of the control and 2D@3D perovskite films, respectively.
Fig. 7. (a) The onset region and (b) the cut-off region of UPS spectra for control and 2D@3D perovskite films. The corresponding distance between VBM and Ef is 0.72 eV, and the Ef values for control and 2D@3D perovskite films are 4.71 eV (21.22-16.51 eV) and 4.57 eV (21.22-16.65 eV), respectively. (c) The PL spectra of different perovskite/Spiro-OMeTAD films on a glass substrate.
Fig. 8. Device architecture and photovoltaic performance. (a) The J-V curves of the PSCs based on the control and 2D@3D under forward and reverse scanning directions. (b) The EQE and integrated current density of the solar cells. (c) The PSCs based on the control and 2D@3D at constant bias voltages of 0.94 and 0.96 V, respectively. (d) PCEs depiction of the PSCs with control and 2D@3D perovskite photo-absorber for 42 devices.
Fig. 9. Stability of the PSCs. (a) The humidity test chamber is assembled with a hygrometer, a bottle with deionized water and a sealed box. Humidity of 50%±5% was created in a closed vessel. The photographs of control and 2D@3D perovskite films exposed in that environment for 45 d (b) The perovskite crystallinity evolution of XRD patterns for control and 2D@3D. The stability test of devices as a performance of storage time in different ambience: (c) in air with a humidity of 50%±5%; (d) at a constant heating temperature of 85 °C.
[1] |
Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, H.J. Snaith, Nat. Energy 2 (2017) 17135.
DOI URL |
[2] |
F.Y. Wang, M.F. Yang, S. Yang, X. Qu, L.L. Yang, L. Fan, J.H. Yang, F. Rosei, Nano Energy 67 (2020) 104224.
DOI URL |
[3] |
K.K. Liu, Q. Liu, D.W. Yang, Y.C. Liang, L.Z. Sui, J.Y. Wei, G.W. Xue, W.B. Zhao, X.Y. Wu, L. Dong, C.X. Shan, Light Sci. Appl. 9 (2020) 44.
DOI URL |
[4] |
F.Y. Wang, Y. Zhang, M. Yang, D. Han, L. Yang, L. Fan, Y. Sui, Y. Sun, X. Liu, X. Meng, J. Yang, Adv. Funct. Mater. 31 (2021) 2008052.
DOI URL |
[5] |
W.Q. Yang, R. Su, D.Y. Luo, Q. Hu, F. Zhang, Z.J. Xu, Z.P. Wang, J.L. Tang, Z. Lv, X.Y. Yang, Y.G. Tu, W. Zhang, H.Z. Zhong, Q.H. Gong, T.P. Russell, R. Zhu, Nano Energy 67 (2020) 104189.
DOI URL |
[6] |
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131 (2009) 6050-6051.
DOI URL |
[7] | Best Research-Cell Efficiency Chart, Photovoltaic Research NREL, https://www.nrel.gov/pv/cell-efficiency.html (accessed 20 May 2020). |
[8] |
F.Y. Wang, M.F. Yang, Y.H. Zhang, L.L. Yang, X.Y. Liu, Y.F. Sun, J.H. Yang, Adv. Sci. 6 (2018) 1801170.
DOI URL |
[9] |
Y. Wang, T.Y. Zhang, M. Kan, Y.H. Li, T. Wang, Y.X. Zhao, Joule 2 (2018) 2065-2075.
DOI URL |
[10] |
S. Yang, J. Yao, Y. Quan, M. Hu, R. Su, M. Gao, D. Han, J. Yang, Light Sci. Appl. 9 (2020) 117.
DOI URL |
[11] |
Y. Han, H. Zhao, C.Y. Duan, S.M. Yang, Z. Yang, Z.K. Liu, S.Z. Liu, Adv. Funct. Mater. 30 (2020) 1909972.
DOI URL |
[12] |
F.Y. Wang, Y.H. Zhang, M.F. Yang, J.Y. Du, L.L. Yang, L. Fan, Y.R. Sui, X.Y. Liu, J.H. Yang, J. Power Sources 440 (2019) 227157.
DOI URL |
[13] |
X. Zheng, Y. Deng, B. Chen, H. Wei, X. Xiao, Y. Fang, Y. Lin, Z. Yu, Y. Liu, Q. Wang, J. Huang, Adv. Mater. 30 (2018) 1803428.
DOI URL |
[14] |
F. Zhang, K. Zhu, Adv. Energy Mater. 10 (2019) 1902579.
DOI URL |
[15] |
F. Zhang, Q.X. Huang, J. Song, Y.H. Zhang, C. Ding, F. Liu, D. Liu, X.B. Li, H. Ya-suda, K. Yoshida, J. Qu, S. Hayase, T. Toyoda, T. Minemoto, Q. Shen, Sol. RRL 4 (2019) 1900243.
DOI URL |
[16] |
H. Zhao, Y. Han, Z. Xu, C.Y. Duan, S.M. Yang, S.H. Yuan, Z. Yang, Z.K. Liu, S.Z. Liu, Adv. Energy Mater. 9 (2019) 1902279.
DOI URL |
[17] |
W.R. Zhou, D. Li, Z.G. Xiao, Z.L. Wen, M.M. Zhang, W.P. Hu, X.J. Wu, M.T. Wang, W.H. Zhang, Y.L. Lu, S.H. Yang, S.F. Yang, Adv. Funct. Mater. 29 (2019) 1901026.
DOI URL |
[18] | H.H. Fang, F. Wang, S. Adjokatse, N. Zhao, J. Even, M.A. Loi, Light Sci. Appl. 5 (2016) 16056. |
[19] |
H.W. Zhu, F. Zhang, Y. Xiao, S.R. Wang, X.G. Li, J. Mater. Chem. A 6 (2018) 4971-4980.
DOI URL |
[20] | C.Y. Duan, J. Cui, M.M. Zhang, Y. Han, S.M. Yang, H. Zhao, H.T. Bian, J.X. Yao, K. Zhao, Z.K. Liu, S.Z. Liu, Adv. Energy Mater. 10 (2020) 200691. |
[21] |
C.H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E.N. Ooi, T.K. Ng, O.F. Mohammed, O.M. Bakr, B.S. Ooi, Light Sci. Appl. 8 (2019) 94.
DOI URL |
[22] |
A. Abrusci, S.D. Stranks, P. Docampo, H.L. Yip, A.K. Jen, H.J. Snaith, Nano Lett 13 (2013) 3124-3128.
DOI PMID |
[23] |
K. Yao, S.F. Leng, Z.L. Liu, L.F. Fei, Y.J. Chen, S.B. Li, N.G. Zhou, J. Zhang, Y.X. Xu, L. Zhou, H.T. Huang, A.K.Y. Jen, Joule 3 (2019) 417-431.
DOI URL |
[24] |
C.H. Cui, Y.W. Li, Y.F. Li, Adv. Energy Mater. 7 (2017) 1601251.
DOI URL |
[25] |
L. Xie, H. Hwang, M. Kim, K. Kim, Phys. Chem. Chem. Phys. 19 (2017) 1143-1150.
DOI URL |
[26] | X. Hou, S. Huang, W. Ou-Yang, L. Pan, Z. Sun, X. Chen, ACS Appl. Mater. Inter-faces 9 (2017) 35200-35208. |
[27] |
Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen, Z.M. Chu, Q.F. Ye, X.X. Li, Z.G. Yin, J.B. You, Nat. Photonics. 13 (2019) 460-466.
DOI |
[28] |
Y. Bai, S. Xiao, C. Hu, T. Zhang, X.Y. Meng, H. Lin, Y.L. Yang, S.H. Yang, Adv. Energy Mater. 7 (2017) 1701038.
DOI URL |
[29] |
Y. Wei, H.L. Chu, Y.Y. Tian, B.Q. Chen, K.F. Wu, J.H. Wang, X.C. Yang, B. Cai, Y.F. Zhang, J.J. Zhao, Adv. Energy Mater. 9 (2019) 1900612.
DOI URL |
[30] |
G.Z. Liu, H.Y. Zheng, X.X. Xu, S.D. Xu, X.X. Zhang, X. Pan, S.Y. Dai, Adv. Funct. Mater. 29 (2019) 1807565.
DOI URL |
[31] | T. Zhou, H. Lai, T. Liu, D. Lu, X. Wan, X. Zhang, Y. Liu, Y. Chen, Adv. Mater. 31 (2019) 1901242. |
[32] |
Q. Hu, L. Zhao, J. Wu, K. Gao, D. Luo, Y. Jiang, Z. Zhang, C. Zhu, E. Schaible, A. Hexemer, C. Wang, Y. Liu, W. Zhang, M. Gratzel, F. Liu, T.P. Russell, R. Zhu, Q. Gong, Nat. Commun. 8 (2017) 15688.
DOI URL |
[33] |
P. Chen, Y. Bai, S.C. Wang, M.Q. Lyu, J.H. Yun, L.Z. Wang, Adv. Funct. Mater. 28 (2018) 1706923.
DOI URL |
[34] |
T. Ye, A. Bruno, G. Han, T.M. Koh, J. Li, N.F. Jamaludin, C. Soci, S.G. Mhaisalkar, W.L. Leong, Adv. Funct. Mater. 28 (2018) 1801654.
DOI URL |
[35] |
W.W. Liu, X.H. Li, Y.L. Song, C. Zhang, X.B. Han, H. Long, B. Wang, K. Wang, P.X. Lu, Adv. Funct. Mater. 28 (2018) 1707550.
DOI URL |
[36] |
X. Gong, M. Li, X.B. Shi, H. Ma, Z.K. Wang, L.S. Liao, Adv. Funct. Mater. 25 (2015) 6671-6678.
DOI URL |
[37] |
X.B. Xu, Z.H. Liu, Z.X. Zuo, M. Zhang, Z.X. Zhao, Y. Shen, H.P. Zhou, Q. Chen, Y. Yang, M.K. Wang, Nano Lett 15 (2015) 2402-2408.
DOI URL |
[38] |
D.S. Lee, J.S. Yun, J. Kim, A.M. Soufiani, S. Chen, Y. Cho, X. Deng, J. Seidel, S. Lim, S. Huang, A.W.Y. Ho-Baillie, ACS Energy Lett 3 (2018) 647-654.
DOI URL |
[39] |
J. Qing, X.K.G. Liu, M. Li, F. Liu, Z.C. Yuan, E. Tiukalova, Z. Yan, M. Duchamp, S. Chen, Y.M. Wang, S. Bai, J.M. Liu, H.J. Snaith, C.S. Lee, T.C. Sum, F. Gao, Adv. Energy Mater. 8 (2018) 1800185.
DOI URL |
[40] |
L. Liu, S. Huang, Y. Lu, P.F. Liu, Y.Z. Zhao, C.B. Shi, S.Y. Zhang, J.F. Wu, H.Z. Zhong, M.L. Sui, H.P. Zhou, H.B. Jin, Y. Li, Q. Chen, Adv. Mater. 30 (2018) 1800544.
DOI URL |
[41] |
S. Fu, X.D. Li, L. Wan, Y. Wu, W.N. Zhang, Y.M. Wang, Q.Y. Bao, J.F. Fang, Adv. Energy Mater. 9 (2019) 1901852.
DOI URL |
[42] |
G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Mar-tineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M.K. Nazeeruddin, Nat. Commun. 8 (2017) 15684.
DOI PMID |
[43] |
Y.X. Guo, J.J. Ma, H.W. Lei, F. Yao, B.R. Li, L.B. Xiong, G.J. Fang, J. Mater. Chem. A 6 (2018) 5919-5925.
DOI URL |
[44] |
Y.Q. Zhao, Q.R. Ma, B. Liu, Z.L. Yu, J. Yang, M.Q. Cai, Nanoscale 10 (2018) 8677-8688.
DOI PMID |
[45] |
K. Lee, J. Kim, H. Yu, J.W. Lee, C.M. Yoon, S.K. Kim, J. Jang, J. Mater. Chem. A 6 (2018) 24560-24568.
DOI URL |
[46] |
D.Q. Bi, C.Y. Yi, J.S. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 1 (2016) 16142.
DOI URL |
[47] |
X.X. Feng, R.H. Chen, Z.A. Nan, X.D. Lv, R.Q. Meng, J. Cao, Y. Tang, Adv. Sci. 6 (2019) 1802040.
DOI URL |
[1] | Yong Li, David San Martín, Jinliang Wang, Chenchong Wang, Wei Xu. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91(0): 200-214. |
[2] | Huiping Hu, Kaiyang Xia, Yuechu Wang, Chenguang Fu, Tiejun Zhu, Xinbing Zhao. Fast synthesis and improved electrical stability in n-type Ag2Te thermoelectric materials [J]. J. Mater. Sci. Technol., 2021, 91(0): 241-250. |
[3] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[4] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
[5] | Tobias Mittnacht, P.G. Kubendran Amos, Daniel Schneider, Britta Nestler. Morphological stability of three-dimensional cementite rods in polycrystalline system: A phase-field analysis [J]. J. Mater. Sci. Technol., 2021, 77(0): 252-268. |
[6] | Jun Chai, Shuo Jin, Ziang Yu, Haixuan Xu, Guang-Hong Lu. Research Article Capture efficiency and bias from the defect dynamics near grain boundaries in BCC Fe using mesoscale simulations [J]. J. Mater. Sci. Technol., 2021, 93(0): 169-177. |
[7] | Haonan Cao, Meiqi Yu, Long Zhang, Zhaoxing Zhang, Xinlin Yan, Peng Li, Chuang Yu. Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing [J]. J. Mater. Sci. Technol., 2021, 70(0): 168-175. |
[8] | Bing Yang, Gang He, Wenhao Wang, Yongchun Zhang, Chong Zhang, Yufeng Xia, Xiaofen Xu. Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits [J]. J. Mater. Sci. Technol., 2021, 70(0): 49-58. |
[9] | Yimeng Zhao, Xuan Li, Xiaobin Liu, Jiazi Bi, Yang Wu, Ruijuan Xiao, Ran Li, Tao Zhang. Balancing benefits of strength, plasticity and glass-forming ability in Co-based metallic glasses [J]. J. Mater. Sci. Technol., 2021, 86(0): 110-116. |
[10] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[11] | Lei Su, Min Niu, De Lu, Zhixin Cai, Mingzhu Li, Hongjie Wang. A review on the emerging resilient and multifunctional ceramic aerogels [J]. J. Mater. Sci. Technol., 2021, 75(0): 1-13. |
[12] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[13] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[14] | Wendao Li, Longfei Li, Changdong Wei, Ji-Cheng Zhao, Qiang Feng. Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches [J]. J. Mater. Sci. Technol., 2021, 80(0): 139-149. |
[15] | Xinfeng Zhou, Zirui Jia, Xingxue Zhang, Bingbing Wang, Wei Wu, Xuehua Liu, Binghui Xu, Guanglei Wu. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth [J]. J. Mater. Sci. Technol., 2021, 87(0): 120-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||