J. Mater. Sci. Technol. ›› 2021, Vol. 92: 11-20.DOI: 10.1016/j.jmst.2021.03.022
• Research Article • Previous Articles Next Articles
Meiqiong Oua, Yingche Maa,*(), Kunlei Houa,b, Min Wanga, Guangcai Maa, Kui Liua,*(
)
Received:
2020-11-25
Revised:
2021-03-15
Accepted:
2021-03-15
Published:
2021-11-30
Online:
2021-04-28
Contact:
Yingche Ma,Kui Liu
About author:
kliu@imr.ac.cn (K. Liu).Meiqiong Ou, Yingche Ma, Kunlei Hou, Min Wang, Guangcai Ma, Kui Liu. Effect of grain boundary precipitates on the stress rupture properties of K4750 alloy after long-term aging at 750 °C for 8000 h[J]. J. Mater. Sci. Technol., 2021, 92: 11-20.
Fig. 1. SEM images showing (a-c) the MC and M23C6 carbides in specimen subjected to ST, (d-f) the η phase, MC carbide and M23C6 carbide in specimen subjected to 750°C/8000 h LA, and the γ′ phase in specimens subjected to (g) ST or (h) 750°C/8000 h LA.
Fig. 2. (a) SEM image of precipitates in specimen subjected to 750°C/8000 h LA, EDS line-scanning analysis results show the variation of (b) Ni, (c) Ti, (d) Cr, and (e) Nb contents in the precipitates.
Fig. 3. TEM morphology, EDS spectrum and inset selected area electron diffraction (SEAD) patterns of the precipitates in specimens subjected to (a, b) ST or (c-e) 750°C/8000 h LA.
Mark in | phases | Heat treatment | Ni | Cr | Fe | W | Mo | Ti | A l | Nb |
---|---|---|---|---|---|---|---|---|---|---|
a1 | M23C6 | ST | 7.5 | 81.3 | 0.4 | 5.8 | 5.0 | - | - | - |
b1 | MC | ST | 1.5 | 1.2 | - | 4.9 | 2.4 | 28.4 | - | 61.6 |
c1 | η | LA | 72.6 | 3.6 | 1.4 | 5.0 | 1.0 | 8.6 | 1.3 | 6.5 |
c2 | M23C6 | LA | 5.2 | 69.1 | 0.5 | 20.6 | 4.2 | 0.2 | 0.2 | - |
e2 | MC | LA | 1.3 | 2.2 | 0.1 | 24.5 | 5.1 | 26.5 | - | 40.2 |
Table 1 The chemical composition (wt.%) of the metal clusters (M) in the M23C6 and MC carbides, and the chemical composition (wt.%) of η phase after the ST or the 750°C/8000 h LA treatment.
Mark in | phases | Heat treatment | Ni | Cr | Fe | W | Mo | Ti | A l | Nb |
---|---|---|---|---|---|---|---|---|---|---|
a1 | M23C6 | ST | 7.5 | 81.3 | 0.4 | 5.8 | 5.0 | - | - | - |
b1 | MC | ST | 1.5 | 1.2 | - | 4.9 | 2.4 | 28.4 | - | 61.6 |
c1 | η | LA | 72.6 | 3.6 | 1.4 | 5.0 | 1.0 | 8.6 | 1.3 | 6.5 |
c2 | M23C6 | LA | 5.2 | 69.1 | 0.5 | 20.6 | 4.2 | 0.2 | 0.2 | - |
e2 | MC | LA | 1.3 | 2.2 | 0.1 | 24.5 | 5.1 | 26.5 | - | 40.2 |
Fig. 4. (a) TEM image, and the corresponding EDS mapping images show the distribution of (b) Ni, (c) Cr, (d) Fe, (e) W, (f) Al, (g) Ti, (h) Nb, (i) Mo and (j) C elements in specimen subjected to 750°C/8000 h LA treatment.
Heat treatment | Test condition | Stress rupture life | Elongaiton |
---|---|---|---|
ST | 750°C/430 MPa | 164.2 h | 10.5% |
ST | 750°C/360 MPa | 475.6 h | 5.0% |
LA | 750°C/430 MPa | 20.1 h | 15.5% |
LA | 750°C/360 MPa | 138.3 h | 13.0% |
Table 2 Stress rupture properties of the K4750 alloy after the ST or the 750°C/8000 h LA treatment.
Heat treatment | Test condition | Stress rupture life | Elongaiton |
---|---|---|---|
ST | 750°C/430 MPa | 164.2 h | 10.5% |
ST | 750°C/360 MPa | 475.6 h | 5.0% |
LA | 750°C/430 MPa | 20.1 h | 15.5% |
LA | 750°C/360 MPa | 138.3 h | 13.0% |
Fig. 5. (a, b) Orowan looping mechanism in the ST specimen after testing at 750°C/430 MPa, the stacking fault (SF) shearing mechanism in the LA specimens after testing at (c, d) 750°C/430 MPa and (e, f) 750°C/ 360 MPa.
Fig. 6. The longitudinal microstructures and fracture surfaces of (a-c) 750°C/430 MPa stress rupture specimen subjected to the ST, (d-f) 750°C/430 MPa and (g-i) 750°C/360 MPa stress rupture specimens subjected to the 750°C/8000 h LA treatment.
Fig. 7. The longitudinal microstructures of 750°C/360 MPa stress rupture specimen subjected to 750°C/8000 h LA. (a, b) SEM images showing GB microvoids/cracks, (c) BSE image distinguishing GBs precipitates, (d) SEM image showing the propagation of microvoids/cracks along needle-like η phase.
Fig. 8. EDS maps showing the distribution of (a) Ni, (b) Cr, (c) Fe, (d) W, (e) Al, (f) Ti, (g) Nb, (h) Mo, and (i) C elements, (j) the band contract map, and (k) the phase map in 750°C/360 MPa stress rupture specimen subjected to the 750°C/8000 h LA treatment.
Fig. 9. (a) The band contract map, (b) the phase map, and the IPFs of (c) γ matrix, (d) η phase, (e) M23C6 carbide and (f) MC carbide along Z0 direction in 750°C/360 MPa stress rupture specimen subjected to the 750°C/8000 h LA treatment.
Fig. 10. (a) The phase map, the KAM distribution maps of (b) all phases, (c) γ matrix, (d) η phase, (e) M23C6 carbide, and (f) MC carbide in 750°C/360 MPa stress rupture specimen subjected to the 750°C/8000 h LA treatment.
[1] | R.C. Reed, The Superslloys: Fundamentals and Applications, Cambridge Univer-sity Press, New York, 2006. |
[2] |
T.M. Pollock, S. Tin, J. Propul. Power 22 (2006) 361-374.
DOI URL |
[3] |
A. Picasso, A. Somoza, A. Tolley, J. Alloys Compd. 479 (2009) 129-133.
DOI URL |
[4] |
M.Q. Ou, Y.C. Ma, H.L. Ge, B. Chen, S.J. Zheng, K. Liu, Mater. Sci. Eng. A 736 (2018) 76-86.
DOI URL |
[5] |
H. Jiang, J. Dong, M. Zhang, J. Alloys Compd. 782 (2019) 323-333.
DOI URL |
[6] |
X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, J.S. Hou, H.Q. Ye, Mater. Sci. Eng. A 485 (2008) 74-79.
DOI URL |
[7] |
S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, S. Tin, Mater. Sci. Eng. A 687 (2017) 232-240.
DOI URL |
[8] |
J.P. Shingledecker, G.M. Pharr, Metall. Mater. Trans. A 43 (2012) 1902-1910.
DOI URL |
[9] |
M.R. Jahangiri, M. Abedini, Mater. Des. 64 (2014) 588-600.
DOI URL |
[10] |
C.N. Wei, H.Y. Bor, L. Chang, J. Alloys Compd. 509 (2011) 5708-5714.
DOI URL |
[11] |
B. Tian, C. Lind, O. Paris, Mater. Sci. Eng. A 358 (2003) 44-51.
DOI URL |
[12] |
P. Kontis, A. Kostka, D. Raabe, B. Gault, Acta Mater 166 (2019) 158-167.
DOI URL |
[13] |
G. Bai, J. Li, R. Hu, T. Zhang, H. Kou, H. Fu, Mater. Sci. Eng. A 528 (2011) 2339-2344.
DOI URL |
[14] |
G. Lvov, V.I. Levit, M.J. Kaufman, Metall. Mater. Trans. A 35 (2004) 1669-1679.
DOI URL |
[15] |
Q. Li, S. Tian, H. Yu, N. Tian, Y. Su, Y. Li, Mater. Sci. Eng. A 633 (2015) 20-27.
DOI URL |
[16] |
J. Yang, Q. Zheng, M. Ji, X. Sun, Z. Hu, Mater. Sci. Eng. A 528 (2011) 1534-1539.
DOI URL |
[17] |
K. Zhao, Y.H. Ma, L.H. Lou, J. Alloys Compd. 475 (2009) 648-651.
DOI URL |
[18] |
N. D’Souza, B. Kantor, G.D. West, L.M. Feitosa, H.B. Dong, J. Alloys Compd. 702 (2017) 6-12.
DOI URL |
[19] |
J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, J. Mater. Sci. 41 (2006) 6476-6478.
DOI URL |
[20] |
Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, S.W. Kim, Mater. Charact. 96 (2014) 28-39.
DOI URL |
[21] |
M.Q. Ou, X.C. Hao, Y.C. Ma, R.C. Liu, L. Zhang, K. Liu, J. Alloys Compd. 732 (2018) 107-115.
DOI URL |
[22] |
P. Kontis, D.M. Collins, R.C. Reed, A.J. Wilkinson, D. Raabe, B. Gault, Scr. Mater. 147 (2018) 59-63.
DOI URL |
[23] |
W. Sun, X. Qin, J. Guo, L. Lou, L. Zhou, Mater. Des. 69 (2015) 81-88.
DOI URL |
[24] |
X. Chen, Z. Yao, J. Dong, H. Shen, Y. Wang, J. Alloys Compd. 735 (2018) 928-937.
DOI URL |
[25] |
G Liu, X.S Xiao, M. Véron, S. Birosca, Acta Mater 185 (2020) 493-506.
DOI URL |
[26] |
J. Wang, L.Z. Zhou, L.Y. Sheng, J.T. Guo, Mater. Des. 39 (2012) 55-62.
DOI URL |
[27] |
R.C. Reed, T. Tao, N. Warnken, Acta Mater 57 (2009) 5898-5913.
DOI URL |
[28] |
M. Anderson, A.L. Thielin, F. Bridiera, P. Bocher, J. Savoie, Mater. Sci. Eng. A 679 (2017) 48-55.
DOI URL |
[29] |
F. Long, Y.S. Yoo, C.Y. Jo, S.M. Seo, Y.S. Song, T. Jin, Z.Q. Hu, Mater. Sci. Eng. A 527 (2009) 361-369.
DOI URL |
[30] |
K.J. Ducki, M. Hetmanczyk, D. Kuc, Mater. Chem. Phys. 81 (2003) 490-492.
DOI URL |
[31] |
S. Antonov, M. Detrois, R.C. Helmink, S. Tin, J. Alloys Compd. 626 (2015) 76-86.
DOI URL |
[32] |
C.S. Wang, T.T. Wang, M.L. Tan, Y.G. Guo, J.T. Guo, L.Z. Zhou, J. Mater. Sci. Technol. 31 (2015) 135-142.
DOI URL |
[33] |
M.Q. Ou, Y.C. Ma, H.L. Ge, W.W. Xing, Y.T. Zhou, S.J. Zheng, K. Liu, J. Alloys Compd. 735 (2018) 193-201.
DOI URL |
[34] |
B. Alabbad, S. Tin, Mater. Charact. 151 (2019) 53-63.
DOI |
[35] |
T.M. Smith, B.D. Esser, N. Antolin, G.B. Viswanathan, T. Hanlon, A. Wessman, D. Mourer, W. Windl, D.W. McComb, M.J. Mills, Acta Mater. 100 (2015) 19-31.
DOI URL |
[36] |
M.Q. Ou, Y.C. Ma, W.W. Xing, X.C. Hao, B. Chen, L.L. Ding, K. Liu, J. Mater. Sci. Technol. 35 (2019) 1270-1277.
DOI URL |
[37] |
K.L. Hou, M.Q. Ou, M. Wang, H.Z. Li, Y.C. Ma, Kui Liu, Mater. Sci. Eng. A 763 (2019) 138137.
DOI URL |
[38] |
D.L. Shu, S.G. Tian, N. Tian, J. Xie, Y. Su, Mater. Sci. Eng. A 700 (2017) 152-161.
DOI URL |
[39] |
F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, M. Yuyama, Acta Mater. 102 (2016) 70-78.
DOI URL |
[40] |
G.B. Viswanathan, P.M. Sarosi, M.F. Henry, D.D. Whitis, W.W. Milligan, M.J. Mills, Acta Mater. 53 (2005) 3041-3057.
DOI URL |
[41] |
R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, M.J. Mills, Acta Mater. 59 (2011) 7325-7339.
DOI URL |
[42] |
B.D. Fu, K. Du, G.M. Han, C.Y. Cui, J.X. Zhang, Mater. Lett. 152 (2015) 272-275.
DOI URL |
[43] |
X. Li, J. Zhang, L. Rong, Y. Li, Mater. Sci. Eng. A 488 (2008) 547-553.
DOI URL |
[1] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[2] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[3] | Wendao Li, Longfei Li, Changdong Wei, Ji-Cheng Zhao, Qiang Feng. Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches [J]. J. Mater. Sci. Technol., 2021, 80(0): 139-149. |
[4] | Meiqiong Ou, Yingche Ma, Weiwei Xing, Xianchao Hao, Bo Chen, Leilei Ding, Kui Liu. Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 °C to 800 °C [J]. J. Mater. Sci. Technol., 2019, 35(7): 1270-1277. |
[5] | Xinguang Wang, Guoming Han, Chuanyong Cui, Shuai Guan, Jinguo Li, Guichen Hou, Yizhou Zhou, Xiaofeng Sun. On the γ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 84-87. |
[6] | Shuang Gao, Yizhou Zhou, Zhi-Quan Liu, Tao Jin. Intergrowth of C phase within μ phase in a Re-containing Ni-base single crystal superalloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 806-810. |
[7] | Yao Wang, Junsong Wang, Jiasheng Dong, Aimin Li, Zhijun Li, Guang Xie, Langhong Loua. Hot deformation characteristics and hot working window of as-cast large-tonnage GH3535 superalloy ingot [J]. J. Mater. Sci. Technol., 2018, 34(12): 2439-2446. |
[8] | Yi Gaosong, Zeng Weizhi, D. Poplawsky Jonathan, A. Cullen David, Wang Zhifen, L. Free Michael. Characterizing and modeling the precipitation of Mg-rich phases in Al 5xxx alloys aged at low temperatures [J]. J. Mater. Sci. Technol., 2017, 33(9): 991-1003. |
[9] | Chen Bingqing, Xiong Huaping, Sun Bingbing, Tang Siyi, Guo Shaoqing, Zhang Xuejun. Microstructure Evolution and Tensile Properties of Ti3Al/Ni-based Superalloy Welded Joint [J]. J. Mater. Sci. Technol., 2014, 30(7): 715-721. |
[10] | Enze Liu,Shuchen Sun,Ganfeng Tu,Zhi Zheng,Xiurong Guan,Lingfeng Zhang. Tensile and Fracture Behavior of DZ68 Ni-base Superalloy [J]. J Mater Sci Technol, 2009, 25(06): 727-730. |
[11] | Tan Zhao,Dong Wang,Jian Zhang,Guang Chen,Langhong Lou. Formation of Re-containing Carbides in a Second Generation Directionally Solidi¯ed Ni Base Superalloy [J]. J Mater Sci Technol, 2009, 25(03): 361-364. |
[12] | Hua WEI, Guichen HOU, Xiaofeng SUN, Qi ZHENG, Hengrong GUAN, Zhuangqi HU. XPS and PAT Study on NiAl Phase Formed in a Superalloy by Pack Cementation [J]. J Mater Sci Technol, 2006, 22(06): 785-788. |
[13] | Jieshan HOU, Jianting GUO, Lanzhang ZHOU, Zhijun LI. Development of a Nickel-base Cast Superalloy with High Strength and Superior Creep Properties [J]. J Mater Sci Technol, 2005, 21(03): 347-352. |
[14] | Jianping NIU, Kenu YANG, Tao JIN, Xiaofeng SUN, Hengrong GUAN, Zhuangqi HU. Desulphurization during VIM Refining Ni-base Superalloy using CaO Crucible [J]. J Mater Sci Technol, 2003, 19(01): 69-72. |
[15] | LIU Yuesheng ZHAO Xianguo LIU Zhizhong XIE Xishan Beijing Institute of Aeronautical Materials,100095,China. University of Science and Technology Beijing,100083,China.To whom correspondence should be addressed.. Weakening Mechanisms of Platelike σ Phase on Ni-base Superalloys [J]. J Mater Sci Technol, 1990, 6(5): 319-324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||