J. Mater. Sci. Technol. ›› 2021, Vol. 92: 1-10.DOI: 10.1016/j.jmst.2021.02.045
• Research Article • Next Articles
Tielong Hana,b, Fucheng Wanga, Jiajun Lia, Chunnian Hea,c,d,e,*(), Naiqin Zhaoa,c
Received:
2020-12-20
Revised:
2021-02-07
Accepted:
2021-02-13
Published:
2021-11-30
Online:
2021-05-02
Contact:
Chunnian He
About author:
* School of Materials Science and Engineering and Tian-jin Key Laboratory of Composites and Functional Materials, Tianjin University, Tian-jin 300072, China. E-mail address: cnhe08@tju.edu.cn (C. He).Tielong Han, Fucheng Wang, Jiajun Li, Chunnian He, Naiqin Zhao. Effect of GNPs on microstructures and mechanical properties of GNPs/Al-Cu composites with different heat treatment status[J]. J. Mater. Sci. Technol., 2021, 92: 1-10.
Sample | GNPs | Cu | Al |
---|---|---|---|
Al-Cu alloy | 0 | 4.6 | 95.4 |
GNPs/Al-Cu | 1.4 | 4.6 | 94.0 |
Table 1 Theoretical components of Al-Cu alloy and GNPs/Al-Cu composite (wt%).
Sample | GNPs | Cu | Al |
---|---|---|---|
Al-Cu alloy | 0 | 4.6 | 95.4 |
GNPs/Al-Cu | 1.4 | 4.6 | 94.0 |
Fig. 2. SEM images and the corresponding element distribution of (a, c) Al-Cu alloy powders and (b, d) GNPs/Al-Cu powders. (A colour version of this figure can be viewed online.).
Fig. 3. STEM bright field image of the extruded (a) Al-Cu alloy and (b) GNPs/Al-Cu composite. (c, d) Typical TEM images of the extruded GNPs/Al-Cu bulk composite, some Al4C3 rods are found at the GNPs/Al interface. (A colour version of this figure can be viewed online.).
Fig. 4. STEM bright field image of the solution treated (a) Al-Cu alloy and (b) GNPs/Al-Cu composite, in which the big Al2Cu phase was absence. (c, d) Typical TEM images of the solution treated GNPs/Al-Cu bulk composite, a few Al4C3 rods could be found as indicated by the red arrows and GNPs still tightly bond with the matrix. (A colour version of this figure can be viewed online.).
Fig. 6. (a, b) STEM bright field images and (c-e) TEM images of the peak aged Al-Cu alloy, (f) statistic graph of the precipitate length in the peak aged Al-Cu alloy measured from the STEM images. (A colour version of this figure can be viewed online.).
Fig. 7. (a, b) STEM bright field images and (c-e) TEM images of the peak aged GNPs/Al-Cu composite, (f) statistic graph of the precipitate length in the peak aged GNPs/Al-Cu composite measured from the STEM images. (A colour version of this figure can be viewed online.).
Fig. 9. TEM images of the interface in the peak aged GNPs/Al-Cu composite, showing no extra precipitates near GNPs. (A colour version of this figure can be viewed online.).
Fig. 10. Typical tensile strain-stress curves of (a) extruded, (b) solution treated and (c) peak aged Al-Cu alloy and GNPs/Al-Cu composite. (d) Histogram statistics of the mechanical properties of Al-Cu alloy and GNPs/Al-Cu composite.
Materials | Yield strength/MPa | Tensile strength/MPa | Fracture elongation/% |
---|---|---|---|
Extruded A | 230 | 350 | 15.0 |
Extruded C | 352 | 425 | 10.7 |
Solution treated A | 268 | 430 | 17.0 |
Solution treated C | 430 | 545 | 11.2 |
Peak aged A | 360 | 478 | 18.8 |
Peak aged C | 458 | 568 | 8.5 |
Table 2 Tensile properties of Al-Cu alloy and GNPs/Al-Cu composite in different states.
Materials | Yield strength/MPa | Tensile strength/MPa | Fracture elongation/% |
---|---|---|---|
Extruded A | 230 | 350 | 15.0 |
Extruded C | 352 | 425 | 10.7 |
Solution treated A | 268 | 430 | 17.0 |
Solution treated C | 430 | 545 | 11.2 |
Peak aged A | 360 | 478 | 18.8 |
Peak aged C | 458 | 568 | 8.5 |
[1] |
X. Zhang, N. Zhao, C. He, Prog. Mater. Sci. 113 (2020) 100672.
DOI URL |
[2] |
A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Int. Mater. Rev. 62 (2017) 241-302.
DOI URL |
[3] |
X. Zhang, Y. Xu, M. Wang, E. Liu, N. Zhao, C. Shi, D. Lin, F. Zhu, C. He, Nat. Comm. 11 (1) (2020) 2775.
DOI URL |
[4] |
J. Hwang, T. Yoon, S.H. Jin, J. Lee, T. Kim, S.H. Hong, S. Jeon, Adv. Mater. 25 (2013) 6724-6729.
DOI URL |
[5] |
H.M.I. Jaim, R.A. Isaacs, S.N. Rashkeev, M. Kuklja, D.P. Cole, M.C. LeMieux, I. Ja-siuk, S. Nilufar, L.G. Salamanca-Riba, Carbon 107 (2016) 56-66.
DOI URL |
[6] |
X. Du, W. Du, Z. Wang, K. Liu, S. Li, Mater. Sci. Eng. A 711 (2018) 633-642.
DOI URL |
[7] |
H. Yue, L. Yao, X. Gao, S. Zhang, E. Guo, H. Zhang, X. Lin, B. Wang, J. Alloys Compd. 691 (2017) 755-762.
DOI URL |
[8] |
Z. Yu, W. Yang, C. Zhou, N. Zhang, Z. Chao, H. Liu, Y. Cao, Y. Sun, P. Shao, G. Wu, Carbon 141 (2019) 25-39.
DOI URL |
[9] |
Y. Jiang, Z. Tan, R. Xu, G. Fan, D. Xiong, Q. Guo, Y. Su, Z. Li, D. Zhang, Compos. Part A Appl. 111 (2018) 73-82.
DOI URL |
[10] |
X. Zhang, C. Shi, E. Liu, N. Zhao, C. He, ACS Appl. Mater. Interfaces 10 (2018) 37586-37601.
DOI URL |
[11] |
T. Han, E. Liu, J. Li, N. Zhao, C. He, J. Mater. Sci. Technol. 46 (2020) 21-32.
DOI URL |
[12] |
W. Zhou, P. Mikulova, Y. Fan, K. Kikuchi, N. Nomura, A. Kawasaki, Compos. Part B Eng. 167 (2019) 93-99.
DOI URL |
[13] |
Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, D. Xiong, Q. Guo, Z. Li, D. Zhang, Carbon 146 (2019) 17-27.
DOI URL |
[14] |
S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae, Carbon 82 (2015) 143-151.
DOI URL |
[15] |
M. Yang, L. Weng, H. Zhu, T. Fan, D. Zhang, Carbon 118 (2017) 250-260.
DOI URL |
[16] |
S.E. Shin, D.H. Bae, Compos. Part A Appl. 78 (2015) 42-47.
DOI URL |
[17] | P. Shao, W. Yang, Q. Zhang, Q. Meng, X. Tan, Z. Xiu, J. Qiao, Z. Yu, G. Wu, Com-pos. Part A Appl. 109 (2018) 151-162. |
[18] | S. Prabhakaran, A. Xavior, S. Kalainathan, D. Lin, P. Shukla, V.K. Vasudevan, Mater. Today Commun. 16 (2018) 81-89. |
[19] |
G. Liu, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, C. He, Mater. Sci. Eng. A 699 (2017) 185-193.
DOI URL |
[20] |
M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik, P. Švec, V. Klemm, Mater. Sci. Eng. A 772 (2020) 138820.
DOI URL |
[21] |
S. Mozammil, J. Karloopia, R. Verma, P.K. Jha, J. Alloys Compd. 793 (2019) 454-466.
DOI URL |
[22] |
P. Xiao, Y. Gao, X. Yang, F. Xu, C. Yang, B. Li, Y. Li, Z. Liu, Q. Zheng, J. Alloys Compd. 764 (2018) 96-106.
DOI URL |
[23] |
K. Zhao, Z.Y. Liu, B.L. Xiao, D.R. Ni, Z.Y. Ma, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 134-142.
DOI URL |
[24] |
X.J. Wang, X.S. Hu, W.Q. Liu, J.F. Du, K. Wu, Y.D. Huang, M.Y. Zheng, Mater. Sci. Eng. A 682 (2017) 491-500.
DOI URL |
[25] |
J. Shang, L. Ke, F. Liu, F. Lv, L. Xing, J. Alloy Compd. 797 (2019) 1240-1248.
DOI URL |
[26] |
S.M. Abarghouie, S.S. Reihani, Mater. Des. 31 (2010) 2368-2374.
DOI URL |
[27] |
S. Pal, R. Mitra, V.V. Bhanuprasad, Mater. Sci. Eng. A 480 (2008) 496-505.
DOI URL |
[28] |
D.H. Nam, Y.K. Kim, S.I. Cha, S.H. Hong, Carbon 50 (2012) 4809-4814.
DOI URL |
[29] |
K. Kondoh, H. Fukuda, J. Umeda, H. Imai, B. Fugetsu, Carbon 72 (2014) 15-21.
DOI URL |
[30] | Z. Shen, Q. Ding, C. Liu, J. Wang, H. Tian, J. Li, Z. Zhang, J. Mater. Sci. Technol. 33 (2017) 1159-1164. |
[31] |
Y. Yang, L. Zhan, C. Liu, X. Wang, Q. Wang, Z. Tang, G. Li, M. Huang, Z. Hu, Int. J. Plast. 127 (2019) 102646.
DOI URL |
[32] |
L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen, J. Mater. Sci. Technol. 75 (2021) 126-138.
DOI |
[33] |
P. Ma, C. Liu, Z. Ma, L. Zhan, M. Huang, J. Mater. Sci. Technol. 35 (2019) 885-890.
DOI URL |
[34] |
T. Han, J. Li, N. Zhao, C. He, Carbon 159 (2020) 311-323.
DOI URL |
[35] |
H. Zhang, C. Xu, W. Xiao, K. Ameyama, C. Ma, Mater. Sci. Eng. A 658 (2016) 8-15.
DOI URL |
[36] |
Q. Zhang, B.L. Xiao, Z.Y. Liu, Z.Y. Ma, J. Mater. Sci. 46 (2011) 6783-6793.
DOI URL |
[37] |
W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, A. Kawasaki, Acta Mater. 125 (2017) 369-376.
DOI URL |
[38] |
S.E. Shin, Y.J. Ko, D.H. Bae, Compos. Part B Eng. 106 (2016) 66-73.
DOI URL |
[39] |
Y. Chen, Z. Liu, S. Bai, J. Zhao, G. Liu, J. Mater. Eng. Perform. 28 (2019) 3590-3599.
DOI |
[40] |
J.F. Nie, B.C. Muddle, Acta Mater. 56 (2008) 3490-3501.
DOI URL |
[41] |
Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 30 (2014) 649-655.
DOI |
[42] |
W. Zhou, C. Chen, P. Mikulova, M. Dong, Y. Fan, K. Kikuchi, N. Nomura, A. Kawasaki, J. Alloy Compd. 792 (2019) 988-993.
DOI URL |
[43] |
S. Suresh, T. Christman, Y. Sugimura, Scr. Metall. 23 (1989) 1599-1602.
DOI URL |
[44] |
H. Yang, T. Gao, H. Zhang, J. Nie, X. Liu, J. Mater. Sci. Technol. 35 (2019) 374-382.
DOI URL |
[45] |
A. Bhadauria, L.K. Singh, T. Laha, Mater. Sci. Eng. A 749 (2019) 14-26.
DOI URL |
[46] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12 (2013) 344-350.
DOI PMID |
[47] | N. Tahreen, D.F. Zhang, F.S. Pan, X.J. Jiang, D.Y. Li, D.L. Chen, J. Mater. Sci. Tech-nol. 34 (2018) 1110-1118. |
[1] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[2] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[3] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
[4] | S.Y. Wang, Y. Sun, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Y.M. Ma, H.L. An. Effect of post-bond heat treatment on the microstructure and high temperature mechanical property of a TLP bonded γ′-strengthened co-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 244-258. |
[5] | Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85(0): 95-105. |
[6] | J.F. Zhang, X.X. Zhang, H. Andrä, Q.Z. Wang, B.L. Xiao, Z.Y. Ma. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87(0): 167-175. |
[7] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[8] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[9] | Yongjian Zhang, Guangzhu Bai, Xiaoyan Liu, Jingjie Dai, Xitao Wang, Hailong Zhang. Reinforcement size effect on thermal conductivity in Cu-B/diamond composite [J]. J. Mater. Sci. Technol., 2021, 91(0): 1-4. |
[10] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[11] | Chao Cai, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Chua Dong Qiu, Chen-Nan Sun, Jie Liu, Qingsong Wei, Yusheng Shi. Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance [J]. J. Mater. Sci. Technol., 2020, 57(0): 51-64. |
[12] | Kaustubh Bawane, Kathy Lu. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures [J]. J. Mater. Sci. Technol., 2020, 43(0): 126-134. |
[13] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[14] | Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 133-145. |
[15] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||