J. Mater. Sci. Technol. ›› 2021, Vol. 93: 169-177.DOI: 10.1016/j.jmst.2021.02.046
• Original article • Previous Articles Next Articles
Jun Chaia,b, Shuo Jin a,b, Ziang Yuc,d, Haixuan Xu c,d,**(), Guang-Hong Lua,b,*(
)
Accepted:
2020-12-16
Published:
2021-12-10
Online:
2021-12-10
Contact:
Haixuan Xu,Guang-Hong Lu
About author:
lgh@buaa.edu.cn (G.-H. Lu).Jun Chai, Shuo Jin, Ziang Yu, Haixuan Xu, Guang-Hong Lu. Research Article Capture efficiency and bias from the defect dynamics near grain boundaries in BCC Fe using mesoscale simulations[J]. J. Mater. Sci. Technol., 2021, 93: 169-177.
Fig. 1. Kinetic information of the Σ25(034) GB. Diffusion barrier distribution, three-dimensional diffusion vector distribution and two-dimensional diffusion vector distribution for 〈110〉 dumbbell (a-c) and vacancy (d-f), respectively. The color bars in b, c, e, and f represent the diffusion barrier value, and the arrows represent diffusion orientations. The yellow region in b and e shows the GB plane. The solid black spheres in b and e, and empty squares close to the GB in c and f represent the atomic absorption positions (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 2. Lifetime and capture efficiency. The dumbbell and vacancy case in Σ25(034) GB is illustrated as an example. (a,b) shows the lifetime for the 10 nm grain size at 300 K by the KMC simulations. The colored points represent the distance from different PDs to the GB plane. (c,d) shows capture efficiency as a function of temperature and grain size.
Fig. 3. Relationship between strain width and capture efficiency. Both 〈100〉 and 〈110〉 GBs are introduced to show the capture efficiency of 30 nm systems at 300 K. (a1-a6) represent the 〈110〉 family GBs and (b1-b8) represent the 〈100〉 family GBs. The 14 insertions show the strain field at the GB plane for the different GB types. The color bar shows the strain value distribution from -5×10-5 to 5×10-5. The arrow with the gradient shows a positive correlation between the width of the strain region and the capture efficiency.
Fig. 4. Capture efficiency and sink strength in 600 K. (a) and (b) show the relationship between the grain size and capture efficiency for both dumbbells and vacancies, including different 〈100〉 and 〈110〉 GBs. (c) and (d) shows the relationship between L-2 (L is the grain size of GB) and sink strength for both dumbbell and vacancy, including different 〈100〉 and 〈110〉 GBs. The dashed lines represent the relationship between L and sink strength in the classic SRT model and modified model.
Fig. 5. (a) relationship between bias and grain size for both 〈100〉 and 〈110〉 GBs at 300 K. The inset in (a) represents the relationship between bias, temperature, and grain size for Σ25(034). (b) shows the bias for different GB types, 30 nm in grain size at 600 K.
[1] | X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science, 327(2010), pp. 1631-1634. |
[2] | H..B. Zhou, Y.L. Liu, S. Jin, Y. Zhang, G.N. Luo, G.H. Lu, Nucl. Fusion., 50(2010), Article 025016. |
[3] | J. Hou, X. Li, K. Lu, J. Mater. Sci. Technol., 68(2020), pp. 30-34. |
[4] | P. Ma, C. Liu, Q. Chen, Q. Wang, L. Zhan, J. Li, J. Mater. Sci. Technol., 46(2020), pp. 107-113. |
[5] | O. El-Atwani, J. Nathaniel, A.C. Leff, K. Hattar, M. Taheri, Sci. Rep., 7(2017), pp. 1-12. |
[6] | B.P. Uberuaga, L.J. Vernon, E. Martinez, A.F. Voter, Sci. Rep., 5 (2015), p.9095. |
[7] | D. Chen, J. Wang, T. Chen, L. Shao, Sci. Rep., 3(2013), pp. 1-5. |
[8] | Y. Zhu, J. Luo, X. Guo, Y. Xiang, S.J. Chapman, Phys. Rev. Lett., 120(2018), Article 222501. |
[9] | B.N. Singh, Philos. Mag., 29(1974), pp. 25-42. |
[10] | S. Dudarev, A. Semenov, C. Woo, Phys. Rev. B, 67(2003), Article 094103. |
[11] | N. Nita, R. Schaeublin, M. Victoria, R. Valiev, Philos. Mag., 85(2005), pp. 723-735. |
[12] | X.X. Wang, L.L. Niu, S. Wang, J. Nucl. Mater., 487(2017), pp. 158-166. |
[13] | X. Li, W. Liu, Y. Xu, C. Liu, Q. Fang, B. Pan, J.L. Chen, G.N. Luo, Z. Wang, Nucl. Fusion, 53(2013), Article 123014. |
[14] | M. Jin, P. Cao, S. Yip, M.P. Short, Acta Mater., 155(2018), pp. 410-417. |
[15] | T. Shen, Nucl. Instrum. Meth. B, 266(2008), pp. 921-925. |
[16] | H. Gleiter, Acta Metall., 27(1979), pp. 187-192. |
[17] | M.A. Tschopp, K. Solanki, F. Gao, X. Sun, M.A. Khaleel, M. Horstemeyer, Phys. Rev. B, 85(2012), Article 064108. |
[18] | S. Watanabe, Y. Takamatsu, N. Sakaguchi, H. Takahashi, J. Nucl. Mater., 283(2000), pp. 152-156. |
[19] | W. Han, M. Demkowicz, E. Fu, Y. Wang, A. Misra, Acta Mater., 60(2012), pp. 6341-6351. |
[20] | G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer)(2007). |
[21] | R. Bullough, M. Hayns, M. Wood, J. Nucl. Mater., 90(1980), pp. 44-59. |
[22] | Y. Zhang, H. Huang, P.C. Millett, M. Tonks, D. Wolf, S.R. Phillpot, J. Nucl. Mater., 422(2012), pp. 69-76. |
[23] | L. Malerba, C.S. Becquart, C. Domain, J. Nucl. Mater., 360(2007), pp. 159-169. |
[24] | C. Jiang, N. Swaminathan, J. Deng, D. Morgan, I. Szlufarska, Mater. Res. Lett., 2(2014), pp. 100-106. |
[25] | A. Vattré, T. Jourdan, H. Ding, M.-.C. Marinica, M. Demkowicz, Nat. Commun., 7(2016), pp. 1-10. |
[26] | Y. Gu, J. Han, S. Dai, Y. Zhu, Y. Xiang, D.J. Srolovitz, J. Mech. Phys. Solids, 101(2017), pp. 166-179. |
[27] | P. Liu, S. Zheng, K. Chen, X. Wang, B. Yan, P. Zhang, S.Q. Shi, Int. J. Plast., 119(2019), pp. 188-199. |
[28] | Z.W. Chang, P. Olsson, D. Terentyev, N. Sandberg, J. Nucl. Mater., 441(2013), pp. 357-363. |
[29] | L. Casillas-Trujillo, A.S. Ervin, L. Xu, A. Barashev, H. Xu, Phys. Rev. Mater., 2(2018), Article 103604. |
[30] | A. Ervin, H. Xu, Comput. Mater. Sci., 150(2018), pp. 180-189. |
[31] | H. Xu, Y.N. Osetsky, R.E. Stoller, J. Phys. Condens. Matter, 24(2012), Article 375402. |
[32] | H. Xu, R.E. Stoller, L.K. Béland, Y.N. Osetsky, Comput. Mater. Sci., 100(2015), pp. 135-143. |
[33] | H. Grimmer, W. Bollmann, D.H. Warrington, Acta Crystallogr. Sect. A, 30(1974), pp. 197-207. |
[34] | Y. Iwasaki, Acta Crystallogr. Sect. A, 32(1976), pp. 59-65. |
[35] | H. Ogawa, Mater. Trans., 47(2006), pp. 2706-2710. |
[36] | S. Plimpton, J. Comput. Phys., 117(1995), pp. 1-19. |
[37] | G. Ackland, M. Mendelev, D. Srolovitz, S. Han, A. Barashev, J. Phys. Condens. Matter, 16 (2004), p.S2629. |
[38] | M.A. Tschopp, M. Horstemeyer, F. Gao, X. Sun, M. Khaleel, Scr. Mater., 64(2011), pp. 908-911. |
[39] | D. Scheiber, R. Pippan, P. Puschnig, L. Romaner, Model. Simul. Mater. Sci. Eng., 24(2016), Article 035013. |
[40] | A. Brailsford, R. Bullough, Philos. Trans. Royal Soc. A, 302(1981), pp. 87-137. |
[41] | S. Golubov, A. Barashev, R. Stoller, Compr. Nucl. Mater.(2012), pp. 357-391. |
[42] | G. Henkelman, H. Jonsson, J. Chem. Phys., 111(1999), pp. 7010-7022. |
[43] | A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comput. Phys., 17(1975), pp. 10-18. |
[44] | L. Malerba, M.C. Marinica, N. Anento, C. Bj ö Rkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, J. Nucl. Mater., 406(2010), pp. 19-38. |
[45] | T. Uesugi, K. Higashi, J. Mater. Sci., 46(2011), pp. 4199-4205. |
[46] | I.J. Beyerlein, M.J. Demkowicz, A. Misra, B. Uberuaga, Prog. Mater. Sci., 74(2015), pp. 125-210. |
[47] | R. Siegel, S. Chang, R. Balluffi, Acta Metall., 28(1980), pp. 249-257. |
[1] | Won-Seok Ko, Ki Beom Park, Hyung-Ki Park. Density functional theory study on the role of ternary alloying elements in TiFe-based hydrogen storage alloys [J]. J. Mater. Sci. Technol., 2021, 92(0): 148-158. |
[2] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[3] | Santanu Mandal, Vijay Kishore, Madhuparna Bose, Samit Kumar Nandi, Mangal Roy. In vitro and in vivo degradability, biocompatibility and antimicrobial characteristics of Cu added iron-manganese alloy [J]. J. Mater. Sci. Technol., 2021, 84(0): 159-172. |
[4] | Pan Liu, Qinhao Zhang, Xinran Li, Jiming Hu, Fahe Cao. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64(0): 99-113. |
[5] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[6] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[7] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[8] | Tayyeb Ali, Lin Wang, Xingwang Cheng, Huanwu Cheng, Ying Yang, Anjin Liu, Xuefeng Xu, Zhe Zhou, Zixuan Ning, Ziqi Xu, Xinhua Min. Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α’’ phases in metastable β phase-field Ti-5553 alloy [J]. J. Mater. Sci. Technol., 2021, 78(0): 238-246. |
[9] | Mingyue Wen, Yuan Sun, Jinjiang Yu, Shulin Yang, Xingyu Hou, Yanhong Yang, Xiaofeng Sun, YiZhou Zhou. Amelioration of weld-crack resistance of the M951 superalloy by engineering grain boundaries [J]. J. Mater. Sci. Technol., 2021, 78(0): 260-267. |
[10] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[11] | Jie Wang, Gaoming Zhu, Leyun Wang, Evgenii Vasilev, Jun-Sang Park, Gang Sha, Xiaoqin Zeng, Marko Knezevic. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling [J]. J. Mater. Sci. Technol., 2021, 84(0): 27-42. |
[12] | Xin Zhong, Tao Zhu, Yaran Niu, Haijun Zhou, Le Zhang, Xiangyu Zhang, Qilian Li, Xuebin Zheng. Effect of microstructure evolution and crystal structure on thermal properties for plasma-sprayed RE2SiO5 (RE = Gd, Y, Er) environmental barrier coatings [J]. J. Mater. Sci. Technol., 2021, 85(0): 141-151. |
[13] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[14] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[15] | Achmad Yanuar Maulana, Jungwook Song, Da Won Lee, Chae Eun Lee, Jongsik Kim. Enhanced electrochemical performance of graphitic carbon-wrapped spherical FeOF nanoparticles using maleopimaric acid as a cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 85(0): 184-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||