J. Mater. Sci. Technol. ›› 2021, Vol. 84: 159-172.DOI: 10.1016/j.jmst.2020.12.029
• Research Article • Previous Articles Next Articles
Santanu Mandala,1, Vijay Kishoreb,1, Madhuparna Bosec, Samit Kumar Nandib,*(), Mangal Roya,*(
)
Received:
2020-10-06
Revised:
2020-11-17
Accepted:
2020-12-07
Published:
2021-09-10
Online:
2021-01-26
Contact:
Samit Kumar Nandi,Mangal Roy
About author:
mroy@metal.iitkgp.ac.in (M. Roy).1These authors have equally contributed to this work.
Santanu Mandal, Vijay Kishore, Madhuparna Bose, Samit Kumar Nandi, Mangal Roy. In vitro and in vivo degradability, biocompatibility and antimicrobial characteristics of Cu added iron-manganese alloy[J]. J. Mater. Sci. Technol., 2021, 84: 159-172.
Alloy | Mn | Cu | Al | Si | C | Fe |
---|---|---|---|---|---|---|
Fe-Mn-0.9 Cu | 27.91 | 0.95 | 0.61 | 1.08 | 0.02 | Balance |
Fe-Mn-5 Cu | 23.42 | 4.35 | 0.29 | 0.86 | 0.02 | Balance |
Fe-Mn-10 Cu | 23.06 | 9.25 | 0.32 | 0.90 | 0.02 | Balance |
Table 1 Chemical composition of the investigated alloys in wt.%.
Alloy | Mn | Cu | Al | Si | C | Fe |
---|---|---|---|---|---|---|
Fe-Mn-0.9 Cu | 27.91 | 0.95 | 0.61 | 1.08 | 0.02 | Balance |
Fe-Mn-5 Cu | 23.42 | 4.35 | 0.29 | 0.86 | 0.02 | Balance |
Fe-Mn-10 Cu | 23.06 | 9.25 | 0.32 | 0.90 | 0.02 | Balance |
Fig. 1. Thermo-Calc calculations: the amount of all phase vs temperature for (a) Fe-Mn-5Cu alloy and (b) Fe-Mn-10Cu alloy; the mass percentage of elements in (c) FCC_A1 phase and (d) FCC_A1#2 phase of Fe-Mn-10Cu alloy.
Fig. 5. (a) Vickers Hardness of Fe-Mn-xCu (x = 0.9, 5 and 10 wt.%) alloys and (b) potentiodynamic polarization curves measured in Hank's salt solution.
Material | Hardness (HV) | Vcorr (mV) | Icorr (μA cm-2) | CR (mmpy) |
---|---|---|---|---|
Fe-Mn-0.9Cu | 138.20 ± 5.26 | -819.36 ± 65 | 4.97 ± 0.2 | 0.058 ± 0.002 |
Fe-Mn-5Cu | 134.20 ± 3.63 | -727.50 ± 54 | 4.19 ± 0.3 | 0.052 ± 0.002 |
Fe-Mn-10Cu | 158.40 ± 2.88 | -788.90 ± 82 | 4.58 ± 0.1 | 0.060 ± 0.001 |
Fe-Mn-10Cu-Age | 157.20 ± 2.77 | -622.70 ± 66 | 5.49 ± 0.4 | 0.072 ± 0.004 |
Table 2 Hardness, corrosion potential and corrosion rate of Fe-Mn-Cu samples.
Material | Hardness (HV) | Vcorr (mV) | Icorr (μA cm-2) | CR (mmpy) |
---|---|---|---|---|
Fe-Mn-0.9Cu | 138.20 ± 5.26 | -819.36 ± 65 | 4.97 ± 0.2 | 0.058 ± 0.002 |
Fe-Mn-5Cu | 134.20 ± 3.63 | -727.50 ± 54 | 4.19 ± 0.3 | 0.052 ± 0.002 |
Fe-Mn-10Cu | 158.40 ± 2.88 | -788.90 ± 82 | 4.58 ± 0.1 | 0.060 ± 0.001 |
Fe-Mn-10Cu-Age | 157.20 ± 2.77 | -622.70 ± 66 | 5.49 ± 0.4 | 0.072 ± 0.004 |
Fig. 6. (a) SEM micrographs of surface morphology, (b) AAS ionic concentrations (blue bar: Mn and pink bar: Fe ion concentration) and (c) GI-X-ray diffraction patterns of the degraded surface of Fe-Mn-xCu (x = 0.9, 5 and 10 wt.%) alloy after immersion in Hank's salt solution at 37 ℃ for 15, 30 and 45 days.
Fig. 7. (a, b) Time-dependent antimicrobial effects of Fe-Mn-xCu (x = 0.9, 5 and 10 wt.%) alloys extract on E.Coli bacteria (E: Extract; H: Hank's solution). Alamar blue assay in terms of (% of initial cell density) of (c) MG-63 cells and (d) MC3T3-E1 cells at 4, 12, and 72 h post exposure of Fe-Mn-xCu (x = 0.9, 5 and 10 wt.%) alloys extract.
Fig. 8. Representative 3D/2D micrograph from Micro-CT of bone-implant interface of Fe-Mn-Cu alloy (white arrow: sample, dotted circle: degraded area).
Fig. 9. (A) Representative micrographs of histological H&E stained sections of the implanted samples (scale bar =200 μm, black circles indicate R.B.Cs), (B) fluorescence images of bone-implant interface of Fe-Mn-Cu alloy (scale bar =500 μm) and (C) percentage of new bone formation in the control and defect site implanted with Fe-Mn-Cu alloys (*P < 0.05, ** P > 0.05).
Material | Processing route | Density | Icorr (μA cm-2) | CR (mmpy) | Hardness (HV) | Reference |
---|---|---|---|---|---|---|
Fe-30Mn | Arc melting | ~bulk | 0.60 ± 0.06 | 0.007 | - | [ |
Fe-30Mn-0.8Ag | Arc melting | ~bulk | 0.89 ± 0.14 | 0.012 | - | [ |
Fe-30Mn-1Ag | Sintering | 80.00 ± 3 | 860 | 2.490 | 156 ± 10 | [ |
Fe-30Mn-3Ag | Sintering | 89.00 ± 5 | 890 | 2.310 | 174 ± 10 | [ |
Fe-25Mn-1Cu | Sintering | 81.28 ± 3 | 2.69 | 0.032 | 331.00 ± 4 | [ |
Fe-25Mn-3Cu | Sintering | 80.62 ± 3 | 2.02 | 0.024 | 319.00 ± 6 | [ |
Fe-25Mn-5Cu | Sintering | 79.48 ± 2 | 2.88 | 0.036 | 334.00 ± 4 | [ |
Fe-25Mn-10Cu | Sintering | 77.88 ± 3 | 20.00 | 0.258 | 281.00 ± 5 | [ |
Fe-Mn-1Ca | Sintering | - | 2.12 ± 0.92 | - | - | [ |
Fe-Mn-2Ca | Sintering | - | 6.36 ± 1.75 | - | - | [ |
Fe-Mn-1Mg | Sintering | - | 5.89 ± 0.80 | - | - | [ |
Fe-Mn-2Mg | Sintering | - | 9.16 ± 1.25 | - | - | [ |
Fe-Mn | 3D Printing | ~bulk | 2.21 ± 0.35 | 0.040 ± 0.01 | - | [ |
Fe-Mn-1Ca | 3D Printing | ~bulk | 2.88 ± 0.54 | 0.070 ± 0.01 | - | [ |
Fe-2Ag | SPS | 98.69 | 10.19 | 0.119 | - | [ |
Fe-5Ag | SPS | 98.73 | 12.17 | 0.140 | - | [ |
Fe-10Ag | SPS | 98.39 | 15.19 | 0.175 | - | [ |
Fe-2Au | SPS | 98.45 | 14.97 | 0.174 | - | [ |
Fe-5Au | SPS | 98.44 | 11.50 | 0.131 | - | [ |
Fe-10Au | SPS | 98.30 | 8.83 | 0.098 | - | [ |
Fe-Mn-0.9Cu | Casting | ~bulk | 4.97 ± 0.2 | 0.058 ± 0.002 | 138.2 ± 5 | Current work |
Fe-Mn-5Cu | Casting | ~bulk | 4.19 ± 0.3 | 0.052 ± 0.002 | 134.2 ± 4 | Current work |
Fe-Mn-10Cu | Casting | ~bulk | 4.58 ± 0.1 | 0.060 ± 0.001 | 158.4 ± 3 | Current work |
Fe-Mn-10Cu-Age | Casting | ~bulk | 5.49 ± 0.4 | 0.072 ± 0.004 | 157.2 ± 3 | Current work |
Table 3 Comparison of corrosion rate and mechanical properties (hardness) of various alloys processed through different routes.
Material | Processing route | Density | Icorr (μA cm-2) | CR (mmpy) | Hardness (HV) | Reference |
---|---|---|---|---|---|---|
Fe-30Mn | Arc melting | ~bulk | 0.60 ± 0.06 | 0.007 | - | [ |
Fe-30Mn-0.8Ag | Arc melting | ~bulk | 0.89 ± 0.14 | 0.012 | - | [ |
Fe-30Mn-1Ag | Sintering | 80.00 ± 3 | 860 | 2.490 | 156 ± 10 | [ |
Fe-30Mn-3Ag | Sintering | 89.00 ± 5 | 890 | 2.310 | 174 ± 10 | [ |
Fe-25Mn-1Cu | Sintering | 81.28 ± 3 | 2.69 | 0.032 | 331.00 ± 4 | [ |
Fe-25Mn-3Cu | Sintering | 80.62 ± 3 | 2.02 | 0.024 | 319.00 ± 6 | [ |
Fe-25Mn-5Cu | Sintering | 79.48 ± 2 | 2.88 | 0.036 | 334.00 ± 4 | [ |
Fe-25Mn-10Cu | Sintering | 77.88 ± 3 | 20.00 | 0.258 | 281.00 ± 5 | [ |
Fe-Mn-1Ca | Sintering | - | 2.12 ± 0.92 | - | - | [ |
Fe-Mn-2Ca | Sintering | - | 6.36 ± 1.75 | - | - | [ |
Fe-Mn-1Mg | Sintering | - | 5.89 ± 0.80 | - | - | [ |
Fe-Mn-2Mg | Sintering | - | 9.16 ± 1.25 | - | - | [ |
Fe-Mn | 3D Printing | ~bulk | 2.21 ± 0.35 | 0.040 ± 0.01 | - | [ |
Fe-Mn-1Ca | 3D Printing | ~bulk | 2.88 ± 0.54 | 0.070 ± 0.01 | - | [ |
Fe-2Ag | SPS | 98.69 | 10.19 | 0.119 | - | [ |
Fe-5Ag | SPS | 98.73 | 12.17 | 0.140 | - | [ |
Fe-10Ag | SPS | 98.39 | 15.19 | 0.175 | - | [ |
Fe-2Au | SPS | 98.45 | 14.97 | 0.174 | - | [ |
Fe-5Au | SPS | 98.44 | 11.50 | 0.131 | - | [ |
Fe-10Au | SPS | 98.30 | 8.83 | 0.098 | - | [ |
Fe-Mn-0.9Cu | Casting | ~bulk | 4.97 ± 0.2 | 0.058 ± 0.002 | 138.2 ± 5 | Current work |
Fe-Mn-5Cu | Casting | ~bulk | 4.19 ± 0.3 | 0.052 ± 0.002 | 134.2 ± 4 | Current work |
Fe-Mn-10Cu | Casting | ~bulk | 4.58 ± 0.1 | 0.060 ± 0.001 | 158.4 ± 3 | Current work |
Fe-Mn-10Cu-Age | Casting | ~bulk | 5.49 ± 0.4 | 0.072 ± 0.004 | 157.2 ± 3 | Current work |
[1] |
J.J. Jacobs, J.L. Gilbert, R.M. Urban, J. Bone Jt. Surg. Am. 80 (1998) 268-282.
DOI URL |
[2] |
B. Hanson, C. van der Werken, D. Stengel, BMC Musculoskeletal Disord. 9 (2008) 73.
DOI URL |
[3] |
M. Heiden, E. Nauman, L. Stanciu, Adv. Healthcare Mater. 6 (2017), 1700120.
DOI URL |
[4] |
A.U. Daniels, M.K.O. Chang, K.P. Andriano, J. Heller, J. Appl. Biomater. 1 (1990) 57-78.
PMID |
[5] | A. Weiler, H.J. Helling, U. Kirch, T.K. Zirbes, K.E. Rehm, J. Bone Jt. Surg. Br. 78 (1996) 369-376. |
[6] |
H.M. Wong, Y. Zhao, F.K.L. Leung, T. Xi, Z. Zhang, Y. Zheng, S. Wu, K.D.K. Luk, K.M.C. Cheung, P.K. Chu, K.W.K. Yeung, Adv. Healthcare Mater. 6 (2017), 1601269.
DOI URL |
[7] |
J. Walker, S. Shadanbaz, T.B.F. Woodfield, M.P. Staiger, G.J. Dias, J. Biomed. Mater. Res. Part B 102 (2014) 1316-1331.
DOI URL |
[8] |
C. Shuai, S. Li, S. Peng, P. Feng, Y. Lai, C. Gao, Mater. Chem. Front. 3 (2019) 544-562.
DOI URL |
[9] |
Y. Chen, P. Huang, H. Chen, S. Wang, H. Wang, J. Guo, X. Zhang, S. Zhang, J. Yan, J. Xia, Z. Xu, ACS Biomater. Sci. Eng. 4 (2018) 4095-4103.
DOI URL |
[10] |
H.F. Li, Z.Z. Shi, L.N. Wang, J. Mater. Sci. Technol. 46 (2020) 136-138.
DOI |
[11] |
M.S. Song, R.C. Zeng, Y.F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.B. Chen, J. Mater. Sci. Technol. 35 (2019) 535-544.
DOI URL |
[12] |
T. Li, H. Zhang, Y. He, N. Wen, X. Wang, J. Mater. Sci. Technol. 31 (2015) 744-750.
DOI URL |
[13] |
R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert, Adv. Eng. Mater. 10 (2008) B3-B14.
DOI URL |
[14] |
D. Noviana, D. Paramitha, M.F. Ulum, H. Hermawan, J. Orthop. Transl. 5 (2016) 9-15.
DOI PMID |
[15] | M.C. Kennady, M.R. Tucker, G.E. Lester, M.J. Buckley, Int. J. Oral Maxillofac.Surg. 18 (1989) 307-310. |
[16] | H. Hermawan, D. Dubé, D. Mantovani, Adv. Mater. Res. 15-17 (2006) 107-112. |
[17] | H. Li, Y. Wang, Q. Peng, Mater. Sci. Eng. C 79 (2017) 37-44. |
[18] |
C. Palacios, Crit. Rev. Food Sci. Nutr. 46 (2006) 621-628.
DOI URL |
[19] | T. Huang, J. Cheng, Y.F. Zheng, Mater. Sci. Eng. C 35 (2014) 43-53. |
[20] |
J. Čapek, Š. Msallamová, E. Jablonská, J. Lipov, D. Vojtĕch, Mater. Sci. Eng. C 79 (2017) 550-562.
DOI URL |
[21] |
T. Huang, J. Cheng, D. Bian, Y. Zheng, J. Biomed. Mater. Res. Part B 104 (2016) 225-240.
DOI URL |
[22] |
T. Kraus, F. Moszner, S. Fischerauer, M. Fiedler, E. Martinelli, J. Eichler, F. Witte, E. Willbold, M. Schinhammer, M. Meischel, P.J. Uggowitzer, J.F. Löffler, A. Weinberg, Acta Biomater. 10 (2014) 3346-3353.
DOI URL |
[23] |
P. Sotoudehbagha, S. Sheibani, M. Khakbiz, S. Ebrahimi-Barough, H. Hermawan, Mater. Sci. Eng. C 88 (2018) 88-94.
DOI URL |
[24] |
G. Grass, C. Rensing, M. Solioz, Appl. Environ. Microbiol. 77 (2011) 1541-1547.
DOI URL |
[25] | D. Tie, F. Feyerabend, W.D. Müller, R. Schade, K. Liefeith, K. Kainer, R. Willumeit, Eur. Cells Mater. 25 (2013) 284-298. |
[26] |
S.J. Fang, Y.H. Liu, L.H. Diao, S.R. Yu, J. Zhang, ISIJ Int. 47 (2007) 1647-1651.
DOI URL |
[27] |
H.S. Ryu, S.H. Hong, J. Electrochem. Soc. 157 (2010) C131.
DOI URL |
[28] |
M. Bonham, J.M. O'Connor, B.M. Hannigan, J.J. Strain, Br. J. Nutr. 87 (2002)393-403.
DOI URL |
[29] |
G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Int. J. Antimicrob. Agents 33 (2009) 587-590.
DOI URL |
[30] |
L. Ren, K. Yang, L. Guo, H. Chai, Mater. Sci. Eng. C 32 (2012) 1204-1209.
DOI URL |
[31] |
S. Mandal, R. Ummadi, M. Bose, V.K. Balla, M. Roy, Mater. Lett. 237 (2019) 323-327.
DOI URL |
[32] |
B. Liu, Y.F. Zheng, Acta Biomater. 7 (2011) 1407-1420.
DOI PMID |
[33] |
Y.F. Zheng, X.N. Gu, F. Witte, Mater. Sci. Eng. R 77 (2014) 1-34.
DOI URL |
[34] |
R. Kumar, R.A. Lerski, S. Gandy, B.A. Clift, R.J. Abboud, J. Orthop. Res. 24 (2006) 1799-1802.
DOI URL |
[35] |
I.T. Hong, C.H. Koo, Mater. Sci. Eng. A 393 (2005) 213-222.
DOI URL |
[36] |
L. Ren, L. Nan, K. Yang, Mater. Des. 32 (2011) 2374-2379.
DOI URL |
[37] |
T. Xi, M.B. Shahzad, D. Xu, Z. Sun, J. Zhao, C. Yang, M. Qi, K. Yang, Mater. Sci. Eng. C 71 (2017) 1079-1085.
DOI URL |
[38] |
P.S. Bagha, M. Khakbiz, S. Sheibani, S. Ebrahimi-Barough, H. Hermawan, ACS Biomater. Sci. Eng. 6 (2020) 2094-2106.
DOI URL |
[39] |
Y.P. Feng, A. Blanquer, J. Fornell, H. Zhang, P. Solsona, M.D. Baró, S. Suri˜nach, E. Ibá˜nez, E. García-Lecina, X. Wei, R. Li, L. Barrios, E. Pellicer, C. Nogués, J. Sort, J. Mater. Chem. B 4 (2016) 6402-6412.
DOI URL |
[40] |
U.E. Schaible, S.H.E. Kaufmann, Nat. Rev. Microbiol. 2 (2004) 946-953.
PMID |
[41] |
R. Liu, Z. Ma, S.K. Kolawole, L. Zeng, Y. Zhao, L. Ren, K. Yang, J. Mater. Sci. Mater. Med. 30 (2019) 75.
DOI URL |
[42] |
Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, J. Ou, G. Yuan, J. Mech. Behav. Biomed. Mater. 72 (2017) 182-191.
DOI URL |
[43] |
C. Liu, X. Fu, H. Pan, P. Wan, L. Wang, L. Tan, K. Wang, Y. Zhao, K. Yang, P.K. Chu, Sci. Rep. 6 (2016) 27374.
DOI URL |
[44] |
R. Gorejová, L. Haverová, R. Oriňaková, A. Oriňak, M. Oriňak, J. Mater. Sci. 54 (2019) 1913-1947.
DOI URL |
[45] | D.P. Giuseppe, M.L. Brandi, Clin. Cases Miner. Bone Metab. 13 (2016) 181-185. |
[46] | M. Miola, C.V. Brovarone, G. Maina, F. Rossi, L. Bergandi, D. Ghigo, S. Saracino, M. Maggiora, R.A. Canuto, G. Muzio, E. Vernè, Mater. Sci. Eng. C 38 (2014) 107-118. |
[47] | P. Mou, H. Peng, L. Zhou, L. Li, H. Li, Q. Huang, Int. J. Nanomed. Nanosurg. 14 (2019) 3331-3343. |
[48] |
S. Jin, L. Ren, K. Yang, J. Mater. Sci. Technol. 32 (2016) 835-839.
DOI URL |
[49] | M. Mahdavi-Roshan, M. Ebrahimi, A. Ebrahimi, Clin. Cases Miner. Bone Metab. 12 (2015) 18-21. |
[50] |
S.N. Rath, A. Brandl, D. Hiller, A. Hoppe, U. Gbureck, R.E. Horch, A.R. Boccaccini, U. Kneser, PLoS One 9 (2014), e113319.
DOI URL |
[51] |
C. Ning, X. Wang, L. Li, Y. Zhu, M. Li, P. Yu, L. Zhou, Z. Zhou, J. Chen, G. Tan, Y. Zhang, Y. Wang, C. Mao, Chem. Res. Toxicol. 28 (2015) 1815-1822.
DOI URL |
[52] | R.Y. Liu, R.G. He, L.Q. Xu, S.F. Guo, Acta Metall. Sin.-Engl. Lett. 31 (2018) 584-590. |
[53] |
D. Hong, D.T. Chou, O.I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H.A. Kuhn, P.N. Kumta, Acta Biomater. 45 (2016) 375-386.
DOI URL |
[1] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[2] | Zhu Hui, Guo Dagang, Zang Hang, A.H. Hanaor Dorian, Yu Sen, Schmidt Franziska, Xu Kewei. Enhancement of hydroxyapatite dissolution through structure modification by Krypton ion irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 148-158. |
[3] | H. Guo, R.H. Cao, Y.F. Zheng, J. Bai, F. Xue, C.L. Chu. Diameter-dependent in vitro performance of biodegradable pure zinc wires for suture application [J]. J. Mater. Sci. Technol., 2019, 35(8): 1662-1670. |
[4] | Huixin Liang, Youwen Yang, Deqiao Xie, Lan Li, Ning Mao, Changjiang Wang, Zongjun Tian, Qing Jiang, Lida Shen. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility [J]. J. Mater. Sci. Technol., 2019, 35(7): 1284-1297. |
[5] | Wang C.,Yang H.T.,Li X.,Zheng Y.F.. In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals [J]. J. Mater. Sci. Technol., 2016, 32(9): 909-918. |
[6] | Xu Zhao, Ling-ling Shi, Jian Xu. A Comparison of Corrosion Behavior in Saline Environment: Rare Earth Metals (Y, Nd, Gd, Dy) for Alloying of Biodegradable Magnesium Alloys [J]. J. Mater. Sci. Technol., 2013, 29(9): 781-787. |
[7] | J. Cheng, B. Liu, Y.H. Wu, Y.F. Zheng. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals [J]. J. Mater. Sci. Technol., 2013, 29(7): 619-627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||