J. Mater. Sci. Technol. ›› 2021, Vol. 93: 178-190.DOI: 10.1016/j.jmst.2021.03.036
• Original article • Previous Articles Next Articles
K. Yamamotoa,b, M. Takahashib, Y. Kamikubo b, Y. Sugiurab, S. Iwasawac, T. Nakataa,*(), S. Kamado a
Accepted:
2021-01-18
Published:
2021-12-10
Online:
2021-12-10
Contact:
T. Nakata
About author:
*E-mail address: nakata@mech.nagaokaut.ac.jp (T.Nakata).K. Yamamoto, M. Takahashi, Y. Kamikubo, Y. Sugiura, S. Iwasawa, T. Nakata, S. Kamado. Optimization of Cu content for the development of high-performance T5-treated thixo-cast Al-7Si-0.5Mg-Cu (wt.%) alloy[J]. J. Mater. Sci. Technol., 2021, 93: 178-190.
Alloy | Si | Mg | Cu | Fe | Ti | Sr | Al |
---|---|---|---|---|---|---|---|
Al-7Si-0.5Mg | 7.22 | 0.52 | <0.01 | 0.11 | 0.04 | 0.014 | Bal. |
Al-7Si-0.5Mg-0.1Cu | 7.15 | 0.50 | 0.11 | 0.11 | 0.05 | 0.012 | Bal. |
Al-7Si-0.5Mg-0.2Cu | 7.31 | 0.52 | 0.26 | 0.11 | 0.05 | 0.010 | Bal. |
Al-7Si-0.5Mg-0.5Cu | 7.01 | 0.51 | 0.50 | 0.12 | 0.04 | 0.012 | Bal. |
Al-7Si-0.5Mg-1.0Cu | 7.14 | 0.53 | 1.00 | 0.12 | 0.04 | 0.010 | Bal. |
Al-7Si-0.5Mg-1.5Cu | 7.20 | 0.54 | 1.52 | 0.12 | 0.05 | 0.009 | Bal. |
Table 1. Alloy nomenclature and compositions of alloy billets used in this work (wt.%).
Alloy | Si | Mg | Cu | Fe | Ti | Sr | Al |
---|---|---|---|---|---|---|---|
Al-7Si-0.5Mg | 7.22 | 0.52 | <0.01 | 0.11 | 0.04 | 0.014 | Bal. |
Al-7Si-0.5Mg-0.1Cu | 7.15 | 0.50 | 0.11 | 0.11 | 0.05 | 0.012 | Bal. |
Al-7Si-0.5Mg-0.2Cu | 7.31 | 0.52 | 0.26 | 0.11 | 0.05 | 0.010 | Bal. |
Al-7Si-0.5Mg-0.5Cu | 7.01 | 0.51 | 0.50 | 0.12 | 0.04 | 0.012 | Bal. |
Al-7Si-0.5Mg-1.0Cu | 7.14 | 0.53 | 1.00 | 0.12 | 0.04 | 0.010 | Bal. |
Al-7Si-0.5Mg-1.5Cu | 7.20 | 0.54 | 1.52 | 0.12 | 0.05 | 0.009 | Bal. |
Fig. 1. Change of Vickers hardness in Al-7Si-0.5Mg and Al-7Si-0.5Mg-xCu (x = 0.1-1.5) alloys during the artificial aging at 200 °C. Note that “As-N.A.” was in the naturally aged for 345.6 ks state.
Alloy | As-N.A. | Peak-aged |
---|---|---|
Al-7Si-0.5Mg | 67 ± 1 | 86 ± 1 |
Al-7Si-0.5Mg-0.1Cu | 66 ± 1 | 88 ± 1 |
Al-7Si-0.5Mg-0.2Cu | 68 ± 1 | 91 ± 1 |
Al-7Si-0.5Mg-0.5Cu | 70 ± 1 | 95 ± 1 |
Al-7Si-0.5Mg-1.0Cu | 72 ± 1 | 98 ± 1 |
Al-7Si-0.5Mg-1.5Cu | 73 ± 1 | 100 ± 2 |
Table 2. Vickers hardness (HV) of the naturally aged (As-N.A.) and peak-aged samples.
Alloy | As-N.A. | Peak-aged |
---|---|---|
Al-7Si-0.5Mg | 67 ± 1 | 86 ± 1 |
Al-7Si-0.5Mg-0.1Cu | 66 ± 1 | 88 ± 1 |
Al-7Si-0.5Mg-0.2Cu | 68 ± 1 | 91 ± 1 |
Al-7Si-0.5Mg-0.5Cu | 70 ± 1 | 95 ± 1 |
Al-7Si-0.5Mg-1.0Cu | 72 ± 1 | 98 ± 1 |
Al-7Si-0.5Mg-1.5Cu | 73 ± 1 | 100 ± 2 |
Alloy | U.T.S. (MPa) | P.S. (MPa) | El. (%) | n-value |
---|---|---|---|---|
Al-7Si-0.5Mg | 258 ± 2 | 184 ± 1 | 9.8 ± 0.4 | 0.169 ± 0.002 |
Al-7Si-0.5Mg-0.1Cu | 271 ± 1 | 193 ± 1 | 8.6 ± 0.1 | 0.167 ± 0.001 |
Al-7Si-0.5Mg-0.2Cu | 284 ± 1 | 204 ± 2 | 8.6 ± 0.1 | 0.172 ± 0.002 |
Al-7Si-0.5Mg-0.5Cu | 296 ± 4 | 209 ± 4 | 8.8 ± 0.4 | 0.176 ± 0.001 |
Al-7Si-0.5Mg-1.0Cu | 306 ± 5 | 216 ± 3 | 5.8 ± 1.5 | 0.185 ± 0.003 |
Al-7Si-0.5Mg-1.5Cu | 266 ± 24 | 214 ± 1 | 2.1 ± 1.1 | 0.185 ± 0.006 |
Table 3. Ultimate tensile strength (U.T.S.), 0.2% proof stress (P.S.), elongation to failure (El.), and work hardening exponent (n-value) of the peak-aged samples.
Alloy | U.T.S. (MPa) | P.S. (MPa) | El. (%) | n-value |
---|---|---|---|---|
Al-7Si-0.5Mg | 258 ± 2 | 184 ± 1 | 9.8 ± 0.4 | 0.169 ± 0.002 |
Al-7Si-0.5Mg-0.1Cu | 271 ± 1 | 193 ± 1 | 8.6 ± 0.1 | 0.167 ± 0.001 |
Al-7Si-0.5Mg-0.2Cu | 284 ± 1 | 204 ± 2 | 8.6 ± 0.1 | 0.172 ± 0.002 |
Al-7Si-0.5Mg-0.5Cu | 296 ± 4 | 209 ± 4 | 8.8 ± 0.4 | 0.176 ± 0.001 |
Al-7Si-0.5Mg-1.0Cu | 306 ± 5 | 216 ± 3 | 5.8 ± 1.5 | 0.185 ± 0.003 |
Al-7Si-0.5Mg-1.5Cu | 266 ± 24 | 214 ± 1 | 2.1 ± 1.1 | 0.185 ± 0.006 |
Fig. 3. (a) El. and P.S. and (b) El. and U.T.S. of various T5-treated Al- (7-10) Si-Mg and Al- (6-10) Si-Mg-Cu alloys produced by gravity-casting [[39], [40], [41], [42], [43], [44], [45], [46]], die-casting [47], [48], [49], [50], [51], [52], [53], [54], and thixo-casting [10,11,55] processing. Note that red symbols represent the data obtained in this work.
Fig. 4. Optical microscope (OM) images of the peak-aged (a) Al-7Si-0.5Mg, (b) Al-7Si-0.5Mg-0.1Cu, (c) Al-7Si-0.5Mg-0.2Cu, (d) Al-7Si-0.5Mg-0.5Cu, (e) Al-7Si-0.5Mg-1.0Cu, and (f) Al-7Si-0.5Mg-1.5Cu alloys.
Fig. 5. Inverse pole figure (IPF) maps of the peak aged (a) Al-7Si-0.5Mg, (b) Al-7Si-0.5Mg-0.1Cu, (c) Al-7Si-0.5Mg-0.2Cu, (d) Al-7Si-0.5Mg-0.5Cu, (e) Al-7Si-0.5Mg-1.0Cu, and (f) Al-7Si-0.5Mg-1.5Cu alloys.
Fig. 6. Backscattered electron (BE) and secondary electron (SE) images of the peak-aged (a) Al-7Si-0.5Mg, (b) Al-7Si-0.5Mg-0.1Cu, (c) Al-7Si-0.5Mg-0.2Cu, (d) Al-7Si-0.5Mg-0.5Cu, (e) Al-7Si-0.5Mg-1.0Cu, and (f) Al-7Si-0.5Mg-1.5Cu alloys.
Fig. 7. BE images and EDX elemental mappings of Al, Si, Mg, Fe, and Cu of the peak-aged (a) Al-7Si-0.5Mg, (b) Al-7Si-0.5Mg-0.1Cu, (c) Al-7Si-0.5Mg-0.2Cu, (d) Al-7Si-0.5Mg-0.5Cu, (e) Al-7Si-0.5Mg-1.0Cu, and (f) Al-7Si-0.5Mg-1.5Cu alloys. Note that marked points in the BE images are locations where EDX point analysis was done.
Alloy | No. | Mg | Al | Si | Fe | Cu |
---|---|---|---|---|---|---|
Al-7Si-0.5Mg | 1 | 8.7 ± 0.6 | 69.2 ± 1.3 | 19.4 ± 0.3 | 2.7 ± 0.4 | <0.1 |
2 | 17.9 ± 0.2 | 69.9 ± 0.2 | 12.1 ± 0.1 | <0.1 | <0.1 | |
Al-7Si-0.5Mg-0.1Cu | 3 | 17.1 ± 0.1 | 72.5 ± 0.2 | 10.1 ± 0.1 | <0.1 | 0.3 ± 0.1 |
4 | 9.1 ± 0.1 | 70.0 ± 0.1 | 17.8 ± 0.1 | 2.6 ± 0.1 | 0.5 ± 0.1 | |
5 | 13.0 ± 0.1 | 65.2 ± 0.1 | 17.9 ± 0.2 | <0.1 | 3.8 ± 0.1 | |
Al-7Si-0.5Mg-0.2Cu | 6 | 18.3 ± 0.4 | 68.6 ± 0.4 | 12.6 ± 0.1 | <0.1 | 0.4 ± 0.1 |
7 | 22.9 ± 0.2 | 48.4 ± 0.4 | 22.7 ± 0.3 | 0.2 ± 0.1 | 5.7 ± 0.3 | |
8 | 8.6 ± 0.1 | 69.7 ± 0.2 | 18.3 ± 0.2 | 2.9 ± 0.1 | 0.4 ± 0.1 | |
Al-7Si-0.5Mg-0.5Cu | 9 | 9.1 ± 0.6 | 70.7 ± 1.1 | 17.1 ± 0.6 | 2.2 ± 0.2 | 0.9 ± 0.2 |
10 | 1.5 ± 0.0 | 71.9 ± 0.8 | 2.9 ± 0.2 | 0.3 ± 0.1 | 23.3 ± 0.9 | |
11 | 13.3 ± 0.2 | 69.5 ± 0.4 | 13.3 ± 0.3 | <0.1 | 3.9 ± 0.2 | |
Al-7Si-0.5Mg-1.0Cu | 12 | 10.9 ± 0.4 | 66.0 ± 0.6 | 19.1 ± 0.3 | 3.3 ± 0.1 | 0.8 ± 0.1 |
13 | 11.5 ± 0.9 | 71.7 ± 2.7 | 13.2 ± 1.4 | <0.1 | 3.6 ± 0.4 | |
14 | 0.3 ± 0.1 | 75.1 ± 1.9 | 1.4 ± 0.1 | 0.2 ± 0.0 | 22.9 ± 1.9 | |
Al-7Si-0.5Mg-1.5Cu | 15 | 20.9 ± 0.2 | 51.6 ± 0.3 | 20.7 ± 0.5 | <0.1 | 6.8 ± 0.7 |
16 | 0.2 ± 0.1 | 69.0 ± 1.4 | 1.3 ± 0.1 | 0.1 ± 0.1 | 29.4 ± 1.5 |
Table 4. EDX point analysis results of chemical compositions measured from different points indicated in Fig. 7 (at.%).
Alloy | No. | Mg | Al | Si | Fe | Cu |
---|---|---|---|---|---|---|
Al-7Si-0.5Mg | 1 | 8.7 ± 0.6 | 69.2 ± 1.3 | 19.4 ± 0.3 | 2.7 ± 0.4 | <0.1 |
2 | 17.9 ± 0.2 | 69.9 ± 0.2 | 12.1 ± 0.1 | <0.1 | <0.1 | |
Al-7Si-0.5Mg-0.1Cu | 3 | 17.1 ± 0.1 | 72.5 ± 0.2 | 10.1 ± 0.1 | <0.1 | 0.3 ± 0.1 |
4 | 9.1 ± 0.1 | 70.0 ± 0.1 | 17.8 ± 0.1 | 2.6 ± 0.1 | 0.5 ± 0.1 | |
5 | 13.0 ± 0.1 | 65.2 ± 0.1 | 17.9 ± 0.2 | <0.1 | 3.8 ± 0.1 | |
Al-7Si-0.5Mg-0.2Cu | 6 | 18.3 ± 0.4 | 68.6 ± 0.4 | 12.6 ± 0.1 | <0.1 | 0.4 ± 0.1 |
7 | 22.9 ± 0.2 | 48.4 ± 0.4 | 22.7 ± 0.3 | 0.2 ± 0.1 | 5.7 ± 0.3 | |
8 | 8.6 ± 0.1 | 69.7 ± 0.2 | 18.3 ± 0.2 | 2.9 ± 0.1 | 0.4 ± 0.1 | |
Al-7Si-0.5Mg-0.5Cu | 9 | 9.1 ± 0.6 | 70.7 ± 1.1 | 17.1 ± 0.6 | 2.2 ± 0.2 | 0.9 ± 0.2 |
10 | 1.5 ± 0.0 | 71.9 ± 0.8 | 2.9 ± 0.2 | 0.3 ± 0.1 | 23.3 ± 0.9 | |
11 | 13.3 ± 0.2 | 69.5 ± 0.4 | 13.3 ± 0.3 | <0.1 | 3.9 ± 0.2 | |
Al-7Si-0.5Mg-1.0Cu | 12 | 10.9 ± 0.4 | 66.0 ± 0.6 | 19.1 ± 0.3 | 3.3 ± 0.1 | 0.8 ± 0.1 |
13 | 11.5 ± 0.9 | 71.7 ± 2.7 | 13.2 ± 1.4 | <0.1 | 3.6 ± 0.4 | |
14 | 0.3 ± 0.1 | 75.1 ± 1.9 | 1.4 ± 0.1 | 0.2 ± 0.0 | 22.9 ± 1.9 | |
Al-7Si-0.5Mg-1.5Cu | 15 | 20.9 ± 0.2 | 51.6 ± 0.3 | 20.7 ± 0.5 | <0.1 | 6.8 ± 0.7 |
16 | 0.2 ± 0.1 | 69.0 ± 1.4 | 1.3 ± 0.1 | 0.1 ± 0.1 | 29.4 ± 1.5 |
Fig. 9. (a) A bright-field TEM image and (b) a selected area electron diffraction (SAED) pattern of the peak-aged Al-7Si-0.5Mg alloy. Note that the incident electron beam is parallel to the [001] direction of the α-Al matrix. A high-resolution TEM (HR-TEM) image and the corresponding Fast Fourier Transformation (FFT) image obtained from particle-like precipitates are also given in Fig. 9 (c) and (d).
Fig. 10. (a) A bright-field TEM image and (b) an SAED pattern of the peak-aged Al-7Si-0.5Mg-0.5Cu alloy. Note that the incident electron beam is parallel to the [001] direction of the α-Al matrix. The HR-TEM images and the corresponding FFT images obtained from precipitates indicated by white arrow-heads, red arrow-heads, and yellow arrow-heads in Fig. 10 (a) are also given in Fig. 10 (c-h).
Alloy | Precipitates type | Vff (%) | Vfo (%) | σmod (MPa) | σcoh (MPa) | σord (MPa) | σpf (MPa) | σpo (MPa) | σtotal(MPa) |
---|---|---|---|---|---|---|---|---|---|
Al-7Si-0.5Mg | β" | 0.14 | - | 6 | 89 | 15 | 111 | - | 111 |
Al-7Si-0.5Mg-0.5Cu | θ' | - | 2.00 | - | - | - | - | 132 | 156 |
β" | 0.07 | - | 5 | 66 | 11 | 82 | - | ||
Q’ | - | 0.03 | - | - | - | - | 20 |
Table 5. Related microstructural factors and resulting σpf, σpo, and σtotal for the Al-7Si-0.5Mg and Al-7Si-0.5Mg-0.5Cu alloy.
Alloy | Precipitates type | Vff (%) | Vfo (%) | σmod (MPa) | σcoh (MPa) | σord (MPa) | σpf (MPa) | σpo (MPa) | σtotal(MPa) |
---|---|---|---|---|---|---|---|---|---|
Al-7Si-0.5Mg | β" | 0.14 | - | 6 | 89 | 15 | 111 | - | 111 |
Al-7Si-0.5Mg-0.5Cu | θ' | - | 2.00 | - | - | - | - | 132 | 156 |
β" | 0.07 | - | 5 | 66 | 11 | 82 | - | ||
Q’ | - | 0.03 | - | - | - | - | 20 |
Fig. 11. BE images of the fractured (a, d) Al-7Si-0.5Mg, (b, e) Al-7Si-0.5Mg-0.5Cu, and (c, f) Al-7Si-0.5Mg-1.0Cu alloys. Note that (a-c) are taken at low magnification and (d-f) are taken at high magnification.
Fig. 12. SE images and the corresponding EDX elemental mapping results of the peak-aged (a) Al-7Si-0.5Mg, (b) Al-7Si-0.5Mg-0.5Cu, and (c) Al-7Si-0.5Mg-1.0Cu alloys.
[1] | J. Hirsch, Aluminium in innovative light-weight car design, Mater. Trans., 52(2011), pp. 818-824. |
[2] | D. Raabe, C.C. Tasan, E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), pp. 64-74. |
[3] | Ducker Worldwide, Aluminum Content in Cars 2016, https://www.european-aluminium.eu/media/1721/european-aluminium-ducker-study-summary-report_sept.pdf, 2016 (accessed Jan. 1, |
[4] | J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications, ASM International, Materials Park, OH(2004). |
[5] | A. Bellini, J.H. Hattel, J. Thorborg, Thermo-mechanical modelling of Aluminium cast parts during solution treatment, Model. Simul. Mat. Sci. Eng., 14(2006), pp. 677-688. |
[6] | R.N. Lumley, R.G. Odonnell, D.R. Gunasegaram, M. Givord, Heat treatment of high-pressure die castings, Metall. Mater. Trans. A, 38(2007), pp. 2564-2574. |
[7] | R.N. Lumley, I.J. Polmear, P.R. Curtis, Rapid Heat Treatment of Aluminum High-Pressure Diecastings, Metall. Mater. Trans. A, 40(2009), pp. 1716-1726. |
[8] | E.A. Elsharkawi, E. Samuel, A.M. Samuel, F.H. Samuel, Effects of Mg, Fe, Be additions and solution heat treatment on the π-AlMgFeSi iron intermetallic phase in Al-7Si-Mg alloys, J. Mater. Sci., 45(2010), pp. 1528-1539. |
[9] | M. Javidani, D. Larouche, X.G. Chen, Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys, Metall. Mater. Trans. A, 47(2016), pp. 4818-4830. |
[10] | P. Cavaliere, E. Cerri, P. Leo, Effect of heat treatments on mechanical properties and damage evolution of thixoformed aluminium alloys, Mater. Charact., 55(2005), pp. 35-42. |
[11] | S.C. Bergsma, X. Li, M.E. Kassner, Semi-solid thermal transformations in Al-Si alloys: II. The optimized tensile and fatigue properties of semi-solid 357 and modified 319 aluminum alloys, Mater. Sci. Eng.: A, 297(2001), pp. 69-77. |
[12] | C. Park, S. Kim, Y. Kwon, Y. Lee, J. Lee, Effect of microstructure on tensile behavior of thixoformed 357-T5 semisolid Al alloy, Metall. Mater. Trans. A, 35 (2004), pp. 1407-1410. |
[13] | K. Yamamoto, M. Takahashi, Y. Kamikubo, Y. Sugiura, S. Iwasawa, T. Nakata, S. Kamado, Influence of process conditions on microstructures and mechanical properties of T5-treated 357 aluminum alloys, J. Alloys Compd., 834(2020), Article 155133. |
[14] | K. Yamamoto, M. Takahashi, Y. Kamikubo, Y. Sugiura, S. Iwasawa, T. Nakata, S. Kamado, Effect of Mg content on age-hardening response, tensile properties, and microstructures of a T5-treated thixo-cast hypoeutectic Al-Si alloy, Mater. Sci. Eng.: A, 798(2020), Article 140089. |
[15] | W.J. Joost, P.E. Krajewski, Towards magnesium alloys for high-volume automotive applications, Scr. Mater., 128(2017), pp. 107-112. |
[16] | D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Prog. Mater. Sci., 49(2004), pp. 389-410. |
[17] | C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort, R. Holmestad, The effect of Cu on precipitation in Al-Mg-Si alloys, Philos. Mag., 87(2007), pp. 3385-3413. |
[18] | E.A. M∅rtsell, F. Qian, C.D. Marioara, Y. Li, Precipitation in an A356 foundry alloy with Cu additions - A transmission electron microscopy study, J. Alloys Compd., 785(2019), pp. 1106-1114. |
[19] | M. Gazizov, C.D Marioara, J. Friis, S. Wenner, R. Holmestad, R. Kaibyshev, Precipitation behavior in an Al-Cu-Mg-Si alloy during ageing, Mater. Sci. Eng.: A, 767(2019), Article 138369. |
[20] | Y. Zheng, W. Xiao, S. Ge, W. Zhao, S. Hanada, C. Ma, Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of Al-Si-Cu-Mg alloys, J. Alloys Compd., 649(2015), pp. 219-296. |
[21] | C.H. Cáceres, I.L. Svensson, J.A. Taylor, Strength-ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 temper, Int. J. Cast Met. Res., 15 (2003), pp. 531-543. |
[22] | E. Sjölander, S. Seifeddine, The heat treatment of Al-Si-Cu-Mg casting alloys, J. Mater. Process. Technol., 210(2010), pp. 1249-1259. |
[23] | G. Wang, Q. Sun, L. Feng, L. Hui, C. Jing, Influence of Cu content on ageing behavior of AlSiMgCu cast alloys, Mater. Des, 28(2007), pp. 1001-1005. |
[24] | Y.J. Li, S. Brusethaug, A. Olsen, Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment, Scr. Mater., 54(2006), pp. 99-103. |
[25] | L. Arnberg, B. Aurivillius, The Crystal Structure of Al(x)Cu2Mg(12-x)Si7, (h-AlCuMgSi), Acta Chem. Scand. A, 34(1980), pp. 1-5. |
[26] | J.M. Silcock, T.J. Heal, H.K. Hardy, Structural Ageing Characteristics of Binary Aluminum-Copper Alloys, J. Inst. Met., 82(1954), pp. 239-248. |
[27] | T. Bogdanoff, L. Lattanzi, M. Merlin, E. Ghassemali, S. Seifeddine, THE influence of copper addition on crack initiation and propagation in an Al-Si-Mg alloy during cyclic testing, Materialia, 12(2020), Article 100787. |
[28] | E. Rincón, H.F. López, M.M. Cisneros, H. Mancha, M.A. Cisneros, Effect of temperature on the tensile properties of an as-cast aluminum alloy A319, Mater. Sci. Eng.: A, 452-453(2007), pp. 682-687. |
[29] | X. Zhu, X. Dong, P. Blake, S. Ji, Improvement in as-cast strength of high pressure die-cast Al-Si-Cu-Mg alloys by synergistic effect of Q-Al5Cu2Mg8Si6 and θ-Al2Cu phases, Mater. Sci. Eng.: A, 802(2021), Article 140612. |
[30] | T. Liu, W.A. Story, L.N. Brewer, Effect of Heat Treatment on the Al-Cu Feedstock Powders for Cold Spray Deposition, Metall. Mater. Trans. A, 50(2019), pp. 3373-3387. |
[31] | X. Dong, S. Amirkhanlou, S. Ji, Formation of strength platform in cast Al-Si-Mg-Cu alloys, Sci. Rep., 9 (2019), p.9582. |
[32] | M.T.D. Giovanni, E.A. M-rtsell, T. Saito, S. Akhtar, M.D. Sabatino, Y. Li, E. Cerri, Influence of Cu addition on the heat treatment response of A356 foundry alloy, Mater. Today Commun., 19(2019), pp. 342-348. |
[33] | E.J. Vinarcik, High Integrity Die Casting Processes, John Wiley & Sons(2002), pp. 67-100. |
[34] | S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Ageing characteristics and high-temperature tensile properties of Al-Si-Cu-Mg alloys with micro-additions of Cr, Ti, V and Zr, Mater. Sci. Eng.: A, 652(2016), pp. 353-364. |
[35] | T. Hosch, L.G. England, R.E. Napolitano, Analysis of the high growth-rate transition in Al-Si eutectic solidification, J. Mater. Sci., 44(2009), pp. 4892-4899. |
[36] | P.M. Kelly, A. Jostons, R.G. Blake, J.G. Napier, The determination of foil thickness by scanning transmission electron microscopy, Phys. Status Solidi, 31(1975), pp. 771-780. |
[37] | R.X. Li, R.D. Li, Y.H. Zhao, L.Z. He, C.X. Li, H.R. Guan, Z.Q. Hu, Age-hardening behavior of cast Al-Si base alloy, Mater. Lett., 58(2004), pp. 2096-2101. |
[38] | Y. Chen, Q. Zu, S. Pan, H. Zhang, H. Liu, B. Zhu, X. Liu, W. Liu, Influences of Cu Content on the Microstructure and Strengthening Mechanisms of Al-Mg-Si-xCu Alloys, Metals (Basel), 9 (2019), p.524. |
[39] | A.M. Kliauga, E.A. Vieira, M. Ferrante, The influence of impurity level and tin addition on the ageing heat treatment of the 356 class alloy, Mater. Sci. Eng.: A, 480(2008), pp. 5-16. |
[40] | A. Kearney, E.L. Rooy, Aluminum Foundry Products, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2, ASM Handbook, ASM International, Materials Park(1990), pp. 123-151. |
[41] | Z. Fan, Semisolid metal processing, Int. Mater. Rev., 47(2002), pp. 49-85. |
[42] | D. Emadi, L.V. Whiting, M. Sahoo, J.H. Sokolowski, P. Burke, M. Hart, Optimal heat treatment of A356.2 alloy, Light Met(2003), pp. 983-989. |
[43] | T. Din, J. Campbell, High strength aerospace aluminum casting alloys: a comparative study, Mater. Sci. Tech., 12(1996), pp. 644-650. |
[44] | G. Asghar, L. Peng, P. Fu, L. Yuan, Y. Liu, Role of Mg2Si precipitates size in determining the ductility of A357 cast alloy, Mater. Des., 186(2020), Article 108280. |
[45] | P. Ouellet, F.H. Samuel, Effect of Mg on the ageing behaviour of Al-Si-Cu 319 type aluminium casting alloys, J. Mater. Sci., 34(1999), pp. 4671-4697. |
[46] | S.G. Shabestari, H. Moemeni, Effect of copper and solidification conditions on the microstructure and mechanical properties of Al-Si-Mg alloys, J. Mater. Process. Technol., 153-154(2004), pp. 193-198. |
[47] | Y. Zhang, S. Wang, E. Lordan, Y. Wang, Z. Fan, Improve mechanical properties of high pressure die cast Al9Si3Cu alloy via dislocation enhanced precipitation, J. Alloys Compd., 785(2019), pp. 1015-1022. |
[48] | X. Zhang, K. Ahmmed, M. Wang, H. Hu, Influence of aging temperatures and times on mechanical properties of vacuum high pressure die cast aluminum alloy A356, Adv. Mater. Res., 445(2012), pp. 277-282. |
[49] | A. Niklas, A.I. Fernández-Calvo, A. Bakedano, S. Orden, M. da Silva, E. Nogués, E. Roset, A new secondary AlSi10MnMg (Fe) Alloy suitable for manufacturing of ductile aluminium parts by vacuum assisted high pressure die casting technology, Metall. Ital., 6(2016), pp. 17-20. |
[50] | G. Timelli, O. Lohne, L. Arnberg, H.I. Laukli, Effect of solution heat treatments on the microstructure and mechanical properties of a die-cast AlSi7MgMn alloy, Metall. Mater. Trans. A, 39(2008), pp. 1747-1758. |
[51] | X. Dong, X. Zhu, S. Ji, Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys, J. Mater. Process. Technol., 266(2019), pp. 105-113. |
[52] | A. Niklas, A. Bakedano, S. Orden, M. da Silva, E. Nogués, A.I. Fernández-Calvo, Effect of microstructure and casting defects on the mechanical properties of secondary AlSi10MnMg(Fe) test parts manufactured by vacuum assisted high pressure die casting technology, Mater. Today: Proc, 2(2015), pp. 4931-4938. |
[53] | T. Pabel, G.F. Geier, H. Rockenschaub, M. Hopfinger, Improved mechanical properties of the high pressure die casting alloy AlSi9Cu3(Fe)(Zn) as a result of the combination of natural and artificial ageing, Int. J. Mat. Res.(2007), pp. 516-520. |
[54] | H. Yang, S. Ji, W. Yang, Y. Wang, Z. Fan, Effect of Mg level on the microstructure and mechanical properties of die-cast Al-Si-Cu alloys, Mater. Sci. Eng.: A, 642(2015), pp. 340-350. |
[55] | E. Cerri, E. Evangelista, S. Spigarelli, P. Cavaliere, F. DeRiccardis, Effects of thermal treatments on microstructure and mechanical properties in a thixocast 319 aluminum alloy, Mater. Sci. Eng.: A, 284(2000), pp. 254-260. |
[56] | T. Din, A.K.M.B. Rashid, J. Campbell, High strength aerospace casting alloys: quality factor assessment, Mater. Sci. Technol., 12(1996), pp. 269-273. |
[57] | Y. Li, Y. Jiang, B. Hu, Q. Li, Novel Al-Ti-Nb-B grain refiners with superior efficiency for Al-Si alloys, Scr. Mater., 187(2020), pp. 262-267. |
[58] | M.S. Salleh, M.Z. Omar, Influence of Cu content on microstructure and mechanical properties of thixoformed Al-Si-Cu-Mg alloys, Trans. Nonferrous Met. Soc. China, 25(2015), pp. 3523-3538. |
[59] | N.L.M. Veldman, A.K. Dahle, D.H. StJohn, L. Arnberg, Dendrite coherency of Al-Si-Cu alloys, Metall. Mater. Trans. A, 32(2001), pp. 147-155. |
[60] | G. Gustafsson, T. Thorvaldsson, G.L. Dunlop, The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys, Metall. Trans. A, 17(1986), pp. 45-52. |
[61] | N.A. Belov, D.G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Elsevier(2005), pp. 47-82. |
[62] | G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mater, 46(1998), pp. 3893-3904. |
[63] | H.W. Zandbergen, S.J. Andersen, J. Jansen, Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies, Science, 277(1997), pp. 1221-1225. |
[64] | L. Gao, K.L.S. Ni, Y. Du, M. Song, The growth mechanisms of q’ precipitate phase in an Al-Cu alloy during aging treatment, J. Mater. Sci. Tech., 61(2021), pp. 25-32. |
[65] | Y.H. Gao, L.F. Cao, J. Kuang, J.T. Pabel, G. Liu, J. Sun, Assembling dual precipitates to improve high-temperature resistance of multi-microalloyed Al-Cu alloys, J. Alloys Compd., 822(2020), Article 153629. |
[66] | M. Roudnická, O. Molnárová, D. Dvorsky, L. Káivsky, D. Vojtěch, Specific Response of Additively Manufactured AlSi9Cu3Fe Alloy to Precipitation Strengthening, Met. Mater. Int., 26(2020), pp. 1168-1181. |
[67] | W. Yang, L. Huang, R. Zhang, M. Wang, Z. Li, Y. Jia, R. Lei, X. Sheng, Electron microscopy studies of the age-hardening behaviors in 6005A alloy and microstructural characterizations of precipitates, J. Alloys Compd., 514(2012), pp. 220-233. |
[68] | J.H. Kim, C.D. Marioara, R. Holmestad, E. Kobayashi, T. Sato, Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys, Mater. Sci. Eng.: A, 560(2013), pp. 154-162. |
[69] | T. Sato, S. Hirosawa, K. Hirose, T. Maeguchi, Roles of microalloying elements on the cluster formation in the initial stage of phase decomposition of Al-based alloys, Metall. Mater. Trans. A, 34(2003), pp. 2745-2755. |
[70] | I.J. Polmear, Light Alloys: Metallurgy of the light metals, (third ed.), Eward Arnold, London(1995), pp. 24-66. |
[71] | A.J. Ardell, Precipitation hardening, Metall. Trans. A, 16(1985), pp. 2131-2165. |
[72] | M. Song, Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates, Mater. Sci. Eng.: A, 443(2007), pp. 172-177. |
[73] | J. Rakhmonov, K. Liu, L. Pan, F. Breton, X.-G. Chen, Enhanced mechanical properties of high-temperature-resistant Al-Cu cast alloy by microalloying with Mg, J. Alloys Compd., 827(2020), Article 154305. |
[74] | J.F. Nie, B.C. Muddle, Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates, Acta Mater, 56(2008), pp. 3490-3501. |
[75] | M.R. Ahmadi, E. Povoden-Karadeniz, K.I. Öksüz, A. Falahati, E. Kozeschnik, A model for precipitation strengthening in multi-particle systems, Comput. Mater. Sci., 91(2014), pp. 173-186. |
[76] | W.J. Poole, X. Wang, D.J. Lloyd, J.D. Embury,The shearable-non-shearable transition in Al-Mg-Si-Cu precipitation hardening alloys: implications on the distribution of slip, work hardening and fracture, Philos. Mag., 85(2005), pp. 3113-3135. |
[77] | S. Roy, L.F. Allard, A. Rodriguez, W.D. Porter, A. Shyam, Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads Part II-Mechanical and Thermal Properties, Metall. Mater. Trans. A, 48(2017), pp. 2543-2562. |
[78] | Z. Ma, L. Zhan, C. Liu, L. Xu, Y. Xu, P. Ma, J. Li, Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy Experiments and modeling, Int. J. Plast., 110(2018), pp. 183-201. |
[79] | H. Li, L. Zhan, M. Huang, X. Zhao, C. Zhou, Z. Qiang, Effects of pre-strain and stress level on stress relaxation ageing behaviour of 2195 Al-Li alloy Experimental and constitutive modelling, J. Alloys Compd., 851(2021), Article 156829. |
[80] | J.da Costa Teixeira, L. Bourgeois, C.W. Sinclair, C.R. Hutchinson, The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength-elongation correlation, Acta Mater, 57(2009), pp. 6075-6089. |
[81] | B. Milligan, D. Ma, L. Allard, A. Clarke, A. Shyam, Crystallographic orientation-dependent strain hardening in a precipitation-strengthened Al-Cu alloy, Acta Mater, 205(2021), Article 116577. |
[82] | A. Bjurenstedt, E. Ghassemali, S. Seifeddine, A.K. Dahle, The effect of Fe-rich intermetallics on crack initiation in cast aluminium An in-situ tensile study, Mater. Sci. Eng.: A, 756(2019), pp. 502-507. |
[83] | Q.G. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357, Metall. Mater. Trans. A, 34(2003), pp. 2887-2899. |
[84] | Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, J.-F. Witz, D. Balloy, Influence of Fe content on the damage mechanism in A319 aluminum alloy Tensile tests and digital image correlation, Eng. Fract. Mech., 183 (2017), pp. 94-108. |
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes [J]. J. Mater. Sci. Technol., 2021, 85(0): 158-168. |
[2] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[3] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[4] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[5] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[6] | Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation [J]. J. Mater. Sci. Technol., 2021, 86(0): 117-126. |
[7] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
[8] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
[9] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[10] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[11] | Junjie Wang, Shangshu Wu, Shu Fu, Sinan Liu, Zhiqiang Ren, Mengyang Yan, Shuangqin Chen, Si Lan, Horst Hahn, Tao Feng. Nanocrystalline CoCrFeNiMn high-entropy alloy with tunable ferromagnetic properties [J]. J. Mater. Sci. Technol., 2021, 77(0): 126-130. |
[12] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
[13] | Ruiqing Lu, Shuwei Zheng, Jie Teng, Jiamin Hu, Dingfa Fu, Jianchun Chen, Guodong Zhao, Fulin Jiang, Hui Zhang. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach [J]. J. Mater. Sci. Technol., 2021, 80(0): 150-162. |
[14] | Jintao Shuai, Xiao Zuo, Zhenyu Wang, Lili Sun, Rende Chen, Li Wang, Aiying Wang, Peiling Ke. Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads [J]. J. Mater. Sci. Technol., 2021, 80(0): 179-190. |
[15] | Hongyu Zhang, Na Yan, Hongyan Liang, Yongchang Liu. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80(0): 203-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||