J. Mater. Sci. Technol. ›› 2021, Vol. 93: 157-168.DOI: 10.1016/j.jmst.2021.03.056
• Original article • Previous Articles Next Articles
Artem P.Tarutina,b(
), Yulia G.Lyagaevaa,b, Aleksey I.Vylkova,b, Maxim Yu.Gorshkova,b, Gennady K.Vdovina, Dmitry A.Medvedeva,b,*(
)
Accepted:2021-02-17
Published:2021-12-10
Online:2021-12-10
Contact:
Artem P.Tarutin,Dmitry A.Medvedev
About author:dmitrymedv@mail.ru (D.A. Medvedev).Artem P.Tarutin, Yulia G.Lyagaeva, Aleksey I.Vylkov, Maxim Yu.Gorshkov, Gennady K.Vdovin, Dmitry A.Medvedev. Performance of Pr2(Ni,Cu)O4+δ electrodes in protonic ceramic electrochemical cells with unseparated and separated gas spaces[J]. J. Mater. Sci. Technol., 2021, 93: 157-168.
Fig. 2. Refined parameters of the cells (a) and calculated bond lengths between oxygen in different positions and cations in the nickel position in the Pr2Ni1-xCuxO4+δ materials.
Fig. 3. Temperature dependencies of sample weight in hydrogen-containing (a) and air (c) media, dependence of oxygen concentration in the samples at room temperature in air (b) and temperature dependence of oxygen concentration in the samples of the Pr2Ni1-xCuxO4+δ compositions in air (d).
Fig. 4. Dilatometry curves obtained at the cooling of the ceramic Pr2Ni1-xCuxO4+δ samples (a) and temperature dependencies of differential TEC values (b)
Fig. 5. Temperature (a) and concentration (b) dependencies of total conductivity for the Pr2Ni1-xCuxO4+δ materials in air. Inset: concentration dependencies of oxygen overstoichiometry at corresponding temperatures.
Fig. 6. EIS spectra for the symmetric cells with Pr2Ni1-xCuxO4+δ electrodes obtained after subtraction of ohmic resistance component at different temperatures: 500 °C (a), 550 °C (b), 600 °C (c), 650 °C (d), 700 °C (e) and 750 °C (f).
Fig. 7. Example of the EIS spectrum for the Pr2Ni0.8Cu0.2O4+δ sample at 600 °С (a) and examples of its processing by the methods of cross-section (b) and equivalent schemes (c), temperature dependencies of the overall Rp (d) and partial resistances for x = 0.2 (e)).
Fig. 8. Concentration dependencies of partial and total polarisation resistances and the corresponding capacitances for symmetrical cells based on BaCe0.7Zr0.1Y0.1Yb0.1O3-δ with Pr2Ni1-xCuxO4+δ electrodes. These data were obtained at 600 °C.
Fig. 9. Voltammetry characteristics of the electrochemical cell with the Pr2Ni0.8Cu0.2O4+δ air electrode in humid air 3% (a) and 20% (b) in the near-cathode area at different temperatures and open circuit voltage (OCV) values observed at these temperatures and humidity (insets in panels (a) and (b)), dependencies of the power density (c), hydrogen output flux (d) at the measurements in dry (filled markers) and humid (open markers) air and total resistance of the cell in dry (e) and humid (f) air.
Fig. 10. EIS spectra of the reversible cell with the Pr2Ni0.8Cu0.2O4+δ air electrode obtained at 550, 650 and 750 °С at pH2O=0.03 and 0.2 atm in the OCV regime (a), temperature dependencies of the total polarisation (left axis) and electrolyte conductivity (right axis) at different air humidity (b) and at different applied voltages (c); temperature dependencies of polarisation conductivity of different electrode processes in humid (open markers) and dry (filled markers) air atmospheres in the OCV regime (d).
Fig. 11. DRT-spectra of the reversible cell with the cathode of the Pr2Ni0.8Cu0.2O4+δ composition in dry (a) and humid (b) atmospheres in normal and standardised forms (c) at different voltages at 650 °С depending on the total polarisation and electrolyte conductivities (d) and conductivities of separate electrode processes calculated by the fit-DRT and EQC methods depending on the voltage (e) and the fitting example by a fit-DRT method at OCV in dry atmosphere. RMSE is the root mean square error, MSE is the mean square error.
| Electrolyte (Thickness) | Air electrode (Humidity) | T,°C | OCV,V | Pmax,W cm-2 | JH2 at 1.3 V, ml cm-2 min-1 | Rp at OCV,Ω cm2 | Rtotal at OCV, Ω cm2 | Refs. |
|---|---|---|---|---|---|---|---|---|
| BCZYYb (26 µm) | Pr2Ni0.8Cu0.2O4+δ (3%) | 650 700 | 1.02 0.98 | 0.28 0.31 | 2.53 3.29 | 0.14 0.07 | 0.85 0.72 | This work |
| BCZDy0.2 (25 µm) | PBN (3%) | 650 700 | 1.03 0.99 | 0.36 0.39 | 2.80 3.73 | 0.21 0.12 | 0.70 0.59 | [56] |
| BCZ0.3Y0.2 (25 µm) | Ca3Co4O9+δ (3%) | 650 700 | 0.98 0.96 | 0.22 0.29 | 2.90 4.02 | 0.21 0.12 | 0.76 0.61 | [56] |
| BCZ0.1Y0.2 (16 µm) | LSN (3%) | 650 700 | 0.99 0.98 | ~0.35 0.46 | 5.2 10.4 | - 0.22 | - 0.49 | [57] |
| BCZY0.2 (800 µm) | LSN (3%) | 650 700 | 1.00 0.98 | 0.33 0.46 | 5.62 9.77 | 0.62 0.27 | 0.88 0.48 | [58] |
| PSN (3%) | 650 700 | 1.02 0.98 | 0.21 0.35 | 7.08 9.77 | 0.9 0.35 | 1.15 0.55 | ||
| BCZIn0.3 (15 µm) | BaCe0.5Zr0.2In0.3O3-δ + NiO (3%) | 650 700 | 0.94 0.91 | 0.11 0.15 | 2.86 4.10 | 1.85 0.90 | 2.92 1.7 | [59] |
| BZY + BCY (20 µm) | LSM (10%) | 650 700 | 0.97 0.96 | 0.08 0.14 | 1.73 3.06 | 2.01 0.97 | 2.73 1.57 | [60] |
| BCZYYC2 (40 µm) | LSN- BCZYYC2 (3%) | 650 700 | 0.98 1.00 | 0.81 1.22 | 23.02 21.03 | 0.14 0.04 | 0.29 0.15 | [61] |
| BZ0.3CY0.2 (20 µm) | BZC-0.2 (30%) BZC-0.3 (30%) BZC-0.4 (30%) BZC-0.5 (30%) | 700 | 0.93 0.94 0.95 0.96 | 0.10 0.15 0.26 0.18 | 1.78 2.45 3.74 3.13 | 0.85 0.55 0.20 0.52 | 1.86 1.30 0.77 1.16 | [62] |
Table 1. Comparison of the capacity characteristics, hydrogen output flux and rSOC resistances.
| Electrolyte (Thickness) | Air electrode (Humidity) | T,°C | OCV,V | Pmax,W cm-2 | JH2 at 1.3 V, ml cm-2 min-1 | Rp at OCV,Ω cm2 | Rtotal at OCV, Ω cm2 | Refs. |
|---|---|---|---|---|---|---|---|---|
| BCZYYb (26 µm) | Pr2Ni0.8Cu0.2O4+δ (3%) | 650 700 | 1.02 0.98 | 0.28 0.31 | 2.53 3.29 | 0.14 0.07 | 0.85 0.72 | This work |
| BCZDy0.2 (25 µm) | PBN (3%) | 650 700 | 1.03 0.99 | 0.36 0.39 | 2.80 3.73 | 0.21 0.12 | 0.70 0.59 | [56] |
| BCZ0.3Y0.2 (25 µm) | Ca3Co4O9+δ (3%) | 650 700 | 0.98 0.96 | 0.22 0.29 | 2.90 4.02 | 0.21 0.12 | 0.76 0.61 | [56] |
| BCZ0.1Y0.2 (16 µm) | LSN (3%) | 650 700 | 0.99 0.98 | ~0.35 0.46 | 5.2 10.4 | - 0.22 | - 0.49 | [57] |
| BCZY0.2 (800 µm) | LSN (3%) | 650 700 | 1.00 0.98 | 0.33 0.46 | 5.62 9.77 | 0.62 0.27 | 0.88 0.48 | [58] |
| PSN (3%) | 650 700 | 1.02 0.98 | 0.21 0.35 | 7.08 9.77 | 0.9 0.35 | 1.15 0.55 | ||
| BCZIn0.3 (15 µm) | BaCe0.5Zr0.2In0.3O3-δ + NiO (3%) | 650 700 | 0.94 0.91 | 0.11 0.15 | 2.86 4.10 | 1.85 0.90 | 2.92 1.7 | [59] |
| BZY + BCY (20 µm) | LSM (10%) | 650 700 | 0.97 0.96 | 0.08 0.14 | 1.73 3.06 | 2.01 0.97 | 2.73 1.57 | [60] |
| BCZYYC2 (40 µm) | LSN- BCZYYC2 (3%) | 650 700 | 0.98 1.00 | 0.81 1.22 | 23.02 21.03 | 0.14 0.04 | 0.29 0.15 | [61] |
| BZ0.3CY0.2 (20 µm) | BZC-0.2 (30%) BZC-0.3 (30%) BZC-0.4 (30%) BZC-0.5 (30%) | 700 | 0.93 0.94 0.95 0.96 | 0.10 0.15 0.26 0.18 | 1.78 2.45 3.74 3.13 | 0.85 0.55 0.20 0.52 | 1.86 1.30 0.77 1.16 | [62] |
Fig. 12. Microstructure analysis of the reversible proton-conducting cell performed in the mode of backscattered electrons at different magnifications (a) and EDS map at the electrode and electrolyte contact (b). The designations: 1 - supporting fuel electrode layer; 2 - functional fuel electrode layer; 3 - electrolyte layer; 4 - Pr2Ni0.8Cu0.2O4+δ air electrode layer.
| [1] | A. Chapman, K. Itaoka, K. Hirose, F.T. Davidson, K. Nagasawa, A.C. Lloyd, M.C. Lewis, Int. J Hydrogen Energy, 44(2019), pp. 6371-6382. |
| [2] | M.A. Pellow, C.J.M. Emmott, C.J. Barnhart, S.M. Benson, Energy Environ. Sci., 8(2015), pp. 1938-1952. |
| [3] | C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, R. O'Hayre, Nat. Energy, 4(2019), pp. 230-240. |
| [4] | W. Wang, D. Medvedev, Z. Shao, Adv. Funct. Mater., 28(2018), Article 1802592. |
| [5] | L. Bi, S. Boulfrad, E. Traversa, Chem. Soc. Rev., 43(2014), pp. 8255-8270. |
| [6] | L. Lei, J. Zhang, Z. Yuan, J. Liu, M. Ni, F. Chen, Adv. Funct. Mater., 29(2019), Article 1903805. |
| [7] | C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O'Hayre, Science, 349(2015), pp. 1321-1326. |
| [8] | M. Ni, M.K.H. Leung, D.Y.C. Leung, Int. J. Hydrog. Energy, 33(2008), pp. 4040-4047. |
| [9] | L. Bi, E. Fabbri, Z. Sun, E. Traversa, J. Electrochem. Soc., 158(2011), pp. B797-B803. |
| [10] | S.S. Hashim, F. Liang, W. Zhou, J. Sunarso, ChemElectroChem, 6(2019), pp. 3549-3569. |
| [11] | A. Jun, J. Kim, J. Shin, G. Kim, ChemElectroChem, 3(2016), pp. 511-530. |
| [12] | H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, A. Ahmad-Khanlou, Solid State Ionics, 138(2000), pp. 79-90. |
| [13] | N. Nasani, D. Ramasamy, S. Mikhalev, A.V. Kovalevsky, D.P. Fagg, J. Power Sources, 278(2015), pp. 582-589. |
| [14] | E. Pikalova, A. Kolchugin, N. Bogdanovich, D. Medvedev, J. Lyagaeva, L. Vedmid, S.Plaksin M.Ananyev, A. Farlenkov, Int. J. Hydrog. Energy, 45(2020), pp. 13612-13624. |
| [15] | V. Vibhu, I.C. Vinke, R.A. Eichel, L.G.J. Haart, J. Power Sources, 482(2021), Article 228909. |
| [16] | A.P. Tarutin, J.G. Lyagaeva, D.A. Medvedev, L. Bi, A.A. Yaremchenko, J. Mater. Chem. A, 9(2021), pp. 154-195. |
| [17] | X. Xu, Y. Pan, Y. Zhong, R. Ranc, Z. Shao, Mater. Horiz., 7(2020), pp. 2519-2565. |
| [18] | N. Danilov, J. Lyagaeva, G. Vdovin, E. Pikalova, D. Medvedev, Energy Convers. Manag., 172(2018), pp. 129-137. |
| [19] | E.Y. Pikalova, V.A. Sadykov, E.A. Filonov, N.F. Eremeev, E.M. Sadovskaya, S.M. Pikalov, N.M. Bogdanovich, J.G. Lyagaeva, A.A. Kolchugin, L.B. Vedmid, A.V. Ishchenko, V.B. Goncharov, Solid State Ionics, 335(2019), pp. 53-60. |
| [20] | A.P. Tarutin, J.G. Lyagaeva, A.S. Farlenkov, A.I. Vylkov, D.M. Medvedev, Ceram. Int., 45(2019), pp. 16105-16112. |
| [21] | J. Hou, Z. Zhu, J. Qian, W. Liu, J. Power Sources, 264 (214)(2021), pp. 67-75. |
| [22] | J.R. Tolchard, T. Grande, Solid State Ionics, 178(2007), pp. 593-599. |
| [23] | S.J. Kim, K.J. Kim, A.M. Dayaghi, G.M. Choi, Int. J. Hydrog. Energy, 41(2016), pp. 14498-14506. |
| [24] | M. Wei, W. Che, H. Li, Z. Wang, F. Yan, Y. Liu, J. Liu, App. Surf. Sci., 484(2019), pp. 551-559. |
| [25] | H. An, D. Shin, H.I. Ji, H. An, D. Shin, H.I. Ji, J. Korean Ceram. Soc., 55(2018), pp. 358-363. |
| [26] | G. Taillades, J. Dailly, M. Taillades-Jacquin, F. Mauvy, A. Essouhmi, M. Marrony, J. Rozière, Fuel Cells, 10(2010), pp. 166-173. |
| [27] | J. Dailly, F. Mauvy, M. Marrony, M. Pouchard, J.C. Grenier, J. Solid State Electrochem., 15(2011), pp. 245-251. |
| [28] | G. Li, H. Jin, Y. Cui, L. Gui, B. He, L. Zhao, J. Power Sources, 341(2017), pp. 192-198. |
| [29] | A. Tarutin, A. Kasyanova, J. Lyagaeva, G. Vdovin, D. Medvedev, J. Energy Chem., 40(2020), pp. 65-74. |
| [30] | A. Tarutin, N. Danilov, J. Lyagaeva, D. Medvedev, App. Sci., 10 (2020), p.2481. |
| [31] | D. Mesguich, J.-M. Bassat, C. Aymonier, A. Brull, L. Dessemond, E. Djurado, Electrochimica Acta, 87(2013), pp. 330-335. |
| [32] | X.Q. Liu, C.L. Song, Y.J. Wu, X.M. Chen, Ceram. Int., 37(2011), pp. 2423-2427. |
| [33] | T. Chen, Y. Zhou, C. Yuan, M. Liu, X. Meng, Z. Zhan, C. Xia, S. Wang, J. Power Sources, 269(2014), pp. 812-817. |
| [34] | Q. Zhou, T. Zhang, C. Zhao, L. Qu, Y. He, T. Wei, X. Tong, Mater. Res. Bull., 131(2020), Article 110986. |
| [35] | https://zirconiaproject.wordpress.com/devices/zirconia-318/. |
| [36] | T.H. Wan, DRTTOOLS website(2015), URL https://sites.google.com/site/drttools.URL |
| [37] | M. Jammali, R.B. Hassen, J. Rohlicek, Powder Diffr, 27(2012), pp. 184-188. |
| [38] | H. Chaker, T. Roisnel, M. Ceretti, R.B. Hassen, Powder Diffr, 25(2010), pp. 241-246. |
| [39] | S.R. Taylor, Geochim. Cosmochim. Acta, 28(1964), pp. 1273-1285. |
| [40] | T. Ogier, C. Prestipino, S. Figueroa, F. Mauvy, J. Mougin, J.C. Greniera, A. Demourgues, J.M. Bassat, Chem. Phys. Lett., 727(2019), pp. 116-120. |
| [41] | F. Gervais, R.P. Lobo, C. Allançon, N. Pellerin, J.M. Bassat, J.P. Loup, P. Odier, Solid State Commun, 88(1993), pp. 245-249. |
| [42] | E. Niwa, K. Wakai, T. Hori, K. Yashiro, J. Mizusaki, T. Hashimoto, Thermochim. Acta, 575(2014), pp. 129-134. |
| [43] | T. Ogier, C. Prestipino, S. Figueroa, F. Mauvy, J. Mougin, J.C. Grenier, J.M. Bassat, Chem. Phys. Lett., 727(2019), pp. 116-120. |
| [44] | Y. Zuo, S. Carter-Searjeant, M. Green, L. Mills, S.H. Mannan, Adv. Power. Technol., 31(2020), pp. 4135-4144. |
| [45] | J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J.C. Grenier, M. Marrony, Electrochim. Acta, 55(2010), pp. 5847-5853. |
| [46] | A. Grimaud, F. Mauvy, J.M. Bassat, S. Fourcade, M. Marrony, J.C. Grenier, J. Mater. Chem., 22(2012), pp. 16017-16025. |
| [47] | A. Grimaud, F. Mauvy, J.M. Bassat, S. Fourcade, L. Rocheron, M. Marrony, J.C. Grenier, J. Electrochem. Soc., 159(2012), pp. B683-B694. |
| [48] | P. Batocchi, F. Mauvy, S. Fourcade, M. Parco, Electrochim. Acta, 145(2014), pp. 1-10. |
| [49] | A.P. Tarutin, G.K. Vdovin, D.A. Medvedev, A.A. Yaremchenko, Electrochim. Acta, 337(2020), Article 135808. |
| [50] | S.-Y. Jeon, M.-B. Choi, H.-N. Im, J.-H. Hwang, S.-J. Song, J. Phys. Chem. Solids, 73(2012), pp. 656-660. |
| [51] | E.G. Kalinina, E. Yu. Pikalova, A.A. Kolchugin, Russ. J. Electrochem., 54(2018), pp. 723-732. |
| [52] | E. Pikalova, A. Kolchugin, N. Bogdanovich, D. Medvedev, J. Lyagaeva, L. Vedmid, A. Farlenkov, Int. J. Hydrog. Energy, 45(2020), pp. 13612-13624. |
| [53] | A. Tarutin, J. Lyagaeva, A. Farlenkov, S. Plaksin, G. Vdovin, A. Demin, D. Medvedev, Materials, 12 (2019), p.118. |
| [54] | M. Dippon, S.M. Babiniec, H. Ding, S. Ricote, N.P. Sullivan, Solid State Ionics, 286(2016), pp. 117-121. |
| [55] | W.G. Coors, A. Manerbino, J. Membr. Sci., 376(2011), pp. 50-55. |
| [56] | E. Pikalova, A. Kolchugin, M. Koroleva, G. Vdovin, A. Farlenkov, D. Medvedev, J. Power Sources, 438(2019), Article 226996. |
| [57] | S. Yang, Y. Lu, Q. Wang, C. Sun, X. Ye, Z. Wen, Int. J. Hydrog. Energy, 43(2018), pp. 20050-20058. |
| [58] | S. Yang, Y. Wen, J. Zhang, Y. Lu, X. Ye, Z. Wen, Electrochim. Acta, 267(2018), pp. 269-277. |
| [59] | S. Yang, Y. Wen, S. Zhang, S. Gu, Z. Wen, X. Ye, Int. J. Hydrog. Energy, 42(2017), pp. 28549-28558. |
| [60] | Y. Wen, S. Yang, S. Gu, X. Ye, Z. Wen, Solid State Ionics, 308(2017), pp. 167-172. |
| [61] | C. Sun, S. Yang, Y. Lu, J. Wen, X. Ye, Z. Wen, J. Power Sources, 449(2020), Article 227498. |
| [62] | Y. Rao, S. Zhong, F. He, Z. Wang, R. Peng, Y. Lu, Int. J. Hydrog. Energy, 37(2012), pp. 12522-12527. |
| [1] | Hemdan S.H. Mohamed, Mohamed Rabia, Xian-Gang Zhou, Xu-Sen Qin, Gomaa Khabiri, Mohamed Shaban, Hussein A. Younus, S. Taha, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation [J]. J. Mater. Sci. Technol., 2021, 83(0): 179-187. |
| [2] | Ji Won Kim, Kwangeun Jung, Taeeun Yim. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 86(0): 70-76. |
| [3] | Ning Liu, Heng Ma, Lu Wang, Yan Zhao, Zhumabay Bakenov, Xin Wang. Dealloying-derived nanoporous deficient titanium oxide as high-performance bifunctional sulfur host-catalysis material in lithium-sulfur battery [J]. J. Mater. Sci. Technol., 2021, 84(0): 124-132. |
| [4] | D.L. Gong, H.L. Wang, E.G. Obbard, R. Yang, Y.L. Hao. Tuning thermal expansion by a continuing atomic rearrangement mechanism in a multifunctional titanium alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 234-243. |
| [5] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
| [6] | Shao-Fang Li, Zhen-Yi Gu, Jin-Zhi Guo, Xian-Kun Hou, Xu Yang, Bo Zhao, Xing-Long Wu. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 78(0): 176-182. |
| [7] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
| [8] | Di Wu, Wen Ren, Yanna NuLi, Jun Yang, Jiulin Wang. Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review [J]. J. Mater. Sci. Technol., 2021, 91(0): 168-177. |
| [9] | Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra [J]. J. Mater. Sci. Technol., 2021, 76(0): 111-121. |
| [10] | Achmad Yanuar Maulana, Jungwook Song, Da Won Lee, Chae Eun Lee, Jongsik Kim. Enhanced electrochemical performance of graphitic carbon-wrapped spherical FeOF nanoparticles using maleopimaric acid as a cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 85(0): 184-193. |
| [11] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
| [12] | Weimian Guan, Jie Yuan, Hao Lv, Tao Zhu, Youtong Fang, Jiabin Liu, Hongtao Wang, Zhihui Li, Zhigong Tang, Wei Yang. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide [J]. J. Mater. Sci. Technol., 2021, 81(0): 1-12. |
| [13] | Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping [J]. J. Mater. Sci. Technol., 2021, 89(0): 167-178. |
| [14] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
| [15] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
