J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (10): 1008-1012.DOI: 10.1016/j.jmst.2016.07.011
Special Issue: 铝合金专辑
• Orginal Article • Previous Articles Next Articles
Wang Zhiguo1,2,Li Chuanpeng1,2,Wang Huiyuan1,*(),Zhu Xian1,Wu Min1,Li Jiehua3,Jiang Qichuan1
Received:
2016-01-23
Accepted:
2016-07-06
Online:
2016-10-10
Published:
2016-11-05
Contact:
Wang Huiyuan
Wang Zhiguo,Li Chuanpeng,Wang Huiyuan,Zhu Xian,Wu Min,Li Jiehua,Jiang Qichuan. Aging Behavior of Nano-SiC/2014Al Composite Fabricated by Powder Metallurgy and Hot Extrusion Techniques[J]. J. Mater. Sci. Technol., 2016, 32(10): 1008-1012.
Fig. 3. TEM bright field images of Al5Cu2Mn3 precipitates in (a) 2014Al alloy, (b) 0.5 vol.% n-SiCp/2014Al aged at 160 °C for 1 h and corresponding (c) EDX and (d) SAED in (b).
Fig. 4. TEM bright field images of (a) Al5Cu2Mn3 in 2014Al alloy, (b) θ′ precipitates in 2014Al alloy, (c) Al5Cu2Mn3 in 0.5 vol.% n-SiCp/2014Al composite and (d) θ′ precipitates in 0.5 vol.% n-SiCp/2014Al composite at peak hardness.
Fig. 5. TEM bright field image of (a) Ω (Al2Cu) and T (Al20Cu2Mn3), (b) σ (Al5Cu6Mg2) and the corresponding HRTEM images of (c) Ω (Al2Cu), (d) T (Al20Cu2Mn3) and (e) σ (Al5Cu6Mg2) precipitates.
Materials | Precipitate | Size (1 h) | Size (peak hardness) | Size (24 h) |
---|---|---|---|---|
2014Al | Al5Cu2Mn3 | ~200 nm | ~210 nm | ~250 nm |
θ′ | — | ~37 nm | ~80 nm | |
n-SiC/2014Al | Al5Cu2Mn3 | ~130 nm | ~135 nm | ~210 nm |
θ′ | — | ~33 nm | ~60 nm |
Table 3 Summary of size of precipitates in 2014Al alloy and n-SiCp/2014Al composite
Materials | Precipitate | Size (1 h) | Size (peak hardness) | Size (24 h) |
---|---|---|---|---|
2014Al | Al5Cu2Mn3 | ~200 nm | ~210 nm | ~250 nm |
θ′ | — | ~37 nm | ~80 nm | |
n-SiC/2014Al | Al5Cu2Mn3 | ~130 nm | ~135 nm | ~210 nm |
θ′ | — | ~33 nm | ~60 nm |
|
[1] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
[2] | Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41(0): 191-198. |
[3] | Kaustubh Bawane, Kathy Lu. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures [J]. J. Mater. Sci. Technol., 2020, 43(0): 126-134. |
[4] | Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 133-145. |
[5] | Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 37(0): 46-54. |
[6] | C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films [J]. J. Mater. Sci. Technol., 2020, 37(0): 85-95. |
[7] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[8] | Y. Jiao, L.J. Huang, S.L. Wei, H.X. Peng, Q. An, S. Jiang, L. Geng. Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance [J]. J. Mater. Sci. Technol., 2019, 35(8): 1532-1542. |
[9] | Shuo Yin, Wenya Li, Bo Song, Xingchen Yan, Min Kuang, Yaxin Xu, Kui Wen, Rocco Lupoi. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying [J]. J. Mater. Sci. Technol., 2019, 35(6): 1003-1007. |
[10] | Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels [J]. J. Mater. Sci. Technol., 2019, 35(4): 623-630. |
[11] | Jinhu Zhang, Jinmin Liu, Dongsheng Xu, Jie Wu, Lei Xu, Rui Yang. Characterization of the prior particle boundaries in a powder metallurgy Ti2AlNb alloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2513-2525. |
[12] | Sree Manu K.M., Ajay Raag L., Rajan T.P.D., Pai B.C., Petley Vijay, Namdeo Verma Shweta. Self-lubricating bidirectional carbon fiber reinforced smart aluminum composites by squeeze infiltration process [J]. J. Mater. Sci. Technol., 2019, 35(11): 2559-2569. |
[13] | Gao Chengde, Yao Meng, Shuai Cijun, Peng Shuping, Deng Youwen. Nano-SiC reinforced Zn biocomposites prepared via laser melting: Microstructure, mechanical properties and biodegradability [J]. J. Mater. Sci. Technol., 2019, 35(11): 2608-2617. |
[14] | Mohamed M. El-Sayed Seleman, Mohamed M.Z. Ahmed, Sabbah Ataya. Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites [J]. J. Mater. Sci. Technol., 2018, 34(9): 1580-1591. |
[15] | Junho Lee, Dongju Lee, Myung Hoon Song, Wonhyuk Rhee, Ho Jin Ryu, Soon Hyung Hong. In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering [J]. J. Mater. Sci. Technol., 2018, 34(8): 1397-1404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||