J. Mater. Sci. Technol. ›› 2022, Vol. 97: 134-146.DOI: 10.1016/j.jmst.2021.04.043
• Research Article • Previous Articles Next Articles
S. Pugal Mania,c, P. Agilanb, M. Kalaiarasanb, K. Ravichandrana,*(), N. Rajendranb, Y. Mengc,*(
)
Received:
2020-07-20
Revised:
2021-03-30
Accepted:
2021-04-20
Published:
2021-06-26
Online:
2021-06-26
Contact:
K. Ravichandran,Y. Meng
About author:
mengyg@mail.tsinghua.edu.cn (Y. Meng).S. Pugal Mani, P. Agilan, M. Kalaiarasan, K. Ravichandran, N. Rajendran, Y. Meng. Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell[J]. J. Mater. Sci. Technol., 2022, 97: 134-146.
C | Mn | P | Si | Cr | Ni | Mo | Cu | Fe |
---|---|---|---|---|---|---|---|---|
0.02 | 1.48 | 0.03 | 0.43 | 16.20 | 10.03 | 2.06 | 0.43 | Bal |
Table 1 Chemical composition of 316L SS (Wt%) bipolar plate.
C | Mn | P | Si | Cr | Ni | Mo | Cu | Fe |
---|---|---|---|---|---|---|---|---|
0.02 | 1.48 | 0.03 | 0.43 | 16.20 | 10.03 | 2.06 | 0.43 | Bal |
Environment | Material | Ecorr (V) | βa (V/dec) | βc (V/dec) | Rp (Ω cm2) | icorr (µA/ cm2) | PE (%) | CR (mil/year) | P(%) |
---|---|---|---|---|---|---|---|---|---|
HT-PEMFC Anode | |||||||||
316L SS | -0.096 | 0.465 | 3.783 | 2172 | 46.15 | - | 9.81 | - | |
CrN | -0.206 | 1.996 | 5.040 | 21,192 | 2.91 | 51.12 | 0.66 | 0.031 | |
CrAlN | -0.147 | 0.484 | 4.419 | 32,021 | 2.76 | 76.3 | 0.5 | 0.009 | |
CrN/CrAlN | -0.010 | 4.190 | 5.981 | 248,103 | 0.17 | 98.12 | 0.03 | 0.001 | |
HT-PEMFC Cathode | |||||||||
316L SS | -0.087 | 0.082 | 2.999 | 1872 | 75.37 | - | 16.1 | - | |
CrN | -0.190 | 3.666 | 3.769 | 12,392 | 4.22 | 55.16 | 1.003 | 0.036 | |
CrAlN | -0.193 | 6.801 | 7.594 | 13,564 | 3.48 | 73.4 | 0.47 | 0.011 | |
CrN/CrAlN | -0.224 | 3.767 | 7.849 | 39,053 | 0.91 | 96.14 | 0.22 | 0.002 |
Table 2 Corrosion parameters of 316L SS, CrN-316L SS, CrAlN-316L SS and CrN/CrAlN-316L SS at HT- PEMFC anode and cathode environments.
Environment | Material | Ecorr (V) | βa (V/dec) | βc (V/dec) | Rp (Ω cm2) | icorr (µA/ cm2) | PE (%) | CR (mil/year) | P(%) |
---|---|---|---|---|---|---|---|---|---|
HT-PEMFC Anode | |||||||||
316L SS | -0.096 | 0.465 | 3.783 | 2172 | 46.15 | - | 9.81 | - | |
CrN | -0.206 | 1.996 | 5.040 | 21,192 | 2.91 | 51.12 | 0.66 | 0.031 | |
CrAlN | -0.147 | 0.484 | 4.419 | 32,021 | 2.76 | 76.3 | 0.5 | 0.009 | |
CrN/CrAlN | -0.010 | 4.190 | 5.981 | 248,103 | 0.17 | 98.12 | 0.03 | 0.001 | |
HT-PEMFC Cathode | |||||||||
316L SS | -0.087 | 0.082 | 2.999 | 1872 | 75.37 | - | 16.1 | - | |
CrN | -0.190 | 3.666 | 3.769 | 12,392 | 4.22 | 55.16 | 1.003 | 0.036 | |
CrAlN | -0.193 | 6.801 | 7.594 | 13,564 | 3.48 | 73.4 | 0.47 | 0.011 | |
CrN/CrAlN | -0.224 | 3.767 | 7.849 | 39,053 | 0.91 | 96.14 | 0.22 | 0.002 |
Fig. 4. Potentiodynamic polarization studies of 316L SS, CrN-316L SS, CrAlN-316L SS and CrN/CrAlN-316L in HT-PEMFC (a) anode and (b) cathode environments.
Fig. 5. EIS studies-(a) Nyquist, (b) Bode-impedance and (c) phase angle plots of 316L SS, CrN-316L SS, CrAlN-316L SS and CrN/CrAlN-316L in HT-PEMFC anode environment.
Fig. 6. EIS studies-(a) Nyquist, (b) Bode-impedance and (c) phase angle plots of 316L SS, CrN-316L SS, CrAlN-316L SS and CrN/CrAlN-316L in HT-PEMFC cathode environment, equivalent circuits for (e) 316L SS and (f) CrN-316L SS, CrAlN-316L SS, CrN/CrAlN-316L SS in HT-PEMFC anode and cathode environments.
Environment | Material | Rs (Ω cm2) | CPE1 | Rct (Ω cm2) × 104 | CPE2 | Rcoat (Ω cm2) | χ2 × 10-4 | ||
---|---|---|---|---|---|---|---|---|---|
Qdl (µF cm-2) | n1 | Qc (µF cm-2) | n2 | ||||||
HT-PEMFC Anode | 316L SS | 1.6 | 31.30 | 0.83 | 3.184 | - | - | - | 4.18 |
CrN | 1.2 | 7.15 | 0.86 | 4.124 | 127.12 | 0.80 | 117.8 | 6.34 | |
CrAlN | 2.4 | 1.74 | 0.90 | 7.321 | 71.84 | 0.83 | 437.5 | 4.34 | |
CrN/CrAlN | 2.1 | 0.61 | 0.93 | 13.427 | 9.87 | 0.89 | 891.2 | 6.19 | |
HT-PEMFC Cathode | 316L SS | 0.9 | 208.28 | 0.82 | 1.672 | - | - | - | 8.34 |
CrN | 1.8 | 112.95 | 0.82 | 2.927 | 413.7 | 0.81 | 71.3 | 4.17 | |
CrAlN | 3.2 | 31.23 | 0.89 | 3.834 | 109.4 | 0.83 | 196.4 | 5.17 | |
CrN/CrAlN | 2.6 | 8.76 | 0.93 | 9.423 | 21.7 | 0.89 | 635.2 | 3.57 |
Table 3 EIS parameters of 316L SS, CrN-316L SS, CrAlN-316L SS and CrN/CrAlN-316L SS at HT-PEMFC anode and cathode environments.
Environment | Material | Rs (Ω cm2) | CPE1 | Rct (Ω cm2) × 104 | CPE2 | Rcoat (Ω cm2) | χ2 × 10-4 | ||
---|---|---|---|---|---|---|---|---|---|
Qdl (µF cm-2) | n1 | Qc (µF cm-2) | n2 | ||||||
HT-PEMFC Anode | 316L SS | 1.6 | 31.30 | 0.83 | 3.184 | - | - | - | 4.18 |
CrN | 1.2 | 7.15 | 0.86 | 4.124 | 127.12 | 0.80 | 117.8 | 6.34 | |
CrAlN | 2.4 | 1.74 | 0.90 | 7.321 | 71.84 | 0.83 | 437.5 | 4.34 | |
CrN/CrAlN | 2.1 | 0.61 | 0.93 | 13.427 | 9.87 | 0.89 | 891.2 | 6.19 | |
HT-PEMFC Cathode | 316L SS | 0.9 | 208.28 | 0.82 | 1.672 | - | - | - | 8.34 |
CrN | 1.8 | 112.95 | 0.82 | 2.927 | 413.7 | 0.81 | 71.3 | 4.17 | |
CrAlN | 3.2 | 31.23 | 0.89 | 3.834 | 109.4 | 0.83 | 196.4 | 5.17 | |
CrN/CrAlN | 2.6 | 8.76 | 0.93 | 9.423 | 21.7 | 0.89 | 635.2 | 3.57 |
Fig. 10. After polarization-SEM images of (a) & (b) CrN-316L SS and (c) & (d) pit profile for CrN-316L SS, SEM images of (e) & (f) CrAlN-316L SS, (g) & (h) CrN-CrAlN-316L SS and (i) surface roughness of CrN-316L SS, CrAlN-316L SS, CrN-CrAlN-316L SS.
Fig. 11. ICR values of 316L SS, CrN-316L SS, CrAlN-316L SS and CrN-CrAlN-316L SS in (a) 60 to 180 N/cm2 and (b) at 140 N/cm2 (before and polarization studies).
[1] |
R.E. Roseli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Roseli, E.H. Majlan, M.A. Haque, Int. J. Hydrogen Energy 42 (2017) 9293-9314.
DOI URL |
[2] |
X. Sun, S.C. Simonsen, T. Norby, A. Chatzitakis, Membranes 9 (2019) 83-128.
DOI URL |
[3] |
C. Alegre, L. Alvarez-Manuel, R. Mustata, L. Valino, A. Lozano, F. Barreras, Int. J. Hydrogen Energy 44 (2019) 12748-12749.
DOI URL |
[4] |
H.S. Oh, J.H. Lee, H. Kim, Int. J. Hydrogen Energy 37 (2012) 10844-10849.
DOI URL |
[5] |
D. Lee, D.G. Lee, J. Power Sources 327 (2016) 119-126.
DOI URL |
[6] | P. Ribeirinha, I. Alves, F.V. Vázquez, G. Schuller, M. Boaventura, A. Mendes, En- ergy 120 (2017) 468-477. |
[7] |
M. Kim, J.W. Lim, D.G. Lee, Compos. Struct. 119 (2015) 630-637.
DOI URL |
[8] |
X.Z Wang, H.Q. Fan, T. Muneshwar, K. Cadien, J.L. Luo, J. Mater. Sci. Technol 61 (2021) 75-84.
DOI URL |
[9] |
Y. Song, C. Zhang, C.Yu. Ling, M. Han, R.Y. Yong, D. Sun, J. Chen, Int. J. Hydrogen Energy 45 (2020) 29832-29847.
DOI URL |
[10] |
S. Pugal Mani, A. Srinivasan, N. Rajendran, Int. J. Hydrogen Energy 40 (2015) 3359-3369.
DOI URL |
[11] |
L. Wang, D.O. Northwood, X. Nie, J. Housden, E. Spain, A. Leyland, J. Power Sources 195 (2010) 3814-3821.
DOI URL |
[12] |
P. Yi, L. Zhu, C. Dong, K. Xiao, Surf. Coat. Technol. 363 (2019) 198-202.
DOI URL |
[13] |
J. Cui, B. Jing, X. Xu, L. Wang, F. Cheng, S. Li, Z. Wen, S. Ji, J. Sun, Int. J. Hydrogen Energy 42 (2017) 11830-11837.
DOI URL |
[14] |
N.D. Nam, M. Vaka, N.T. Hung, J. Power Sources 268 (2014) 240-245.
DOI URL |
[15] |
F. Bi, Yi P, T. Zhou, L. Peng, X. Lai, Int. J. Hydrogen Energy 40 (2015) 9790-97802.
DOI URL |
[16] |
V. Rajaei, H. Rashtchi, K. Raeissi, M. Shamanian, Int. J. Hydrogen Energy 42 (2017) 14264-14278.
DOI URL |
[17] |
P. Alnegren, J.G. Grolig, J. Ekberg, G. Goransson, J.E. Svensson, Fuel Cells 16 (2016) 39-45.
DOI URL |
[18] |
V. Weissbecker, K. Wippermann, W. Lehnert, J. Electrochem. Soc. 161 (2014) F1437-F1447.
DOI URL |
[19] | Wang L, L. Li, H. Liu, S. Wang, H. Fang, H. Gao, K. Gao, Y. Zhang, J. Sun, Ji Yan, Int. J. Hydrogen Energy 399 (2018) 343-349. |
[20] |
H. Agarwal, R. Pandey, S.D. Bhat, Int. J. Hydrogen Energy 45 (2020) 18731-18742.
DOI URL |
[21] |
N.F. Asri, T. Husaini, A.B. Sulong, E.H. Majlan, W.R.W. Daud, Int. J. Hydrogen Energy 42 (2017) 9135-9148.
DOI URL |
[22] |
G. Li, L. Zhang, F. Cai, Y. Yang, Q. Wang, S. Zhang, Surf. Coat. Technol. 366 (2019) 355-365.
DOI URL |
[23] |
M. Alishahi, F. Mahboubi, S.M. Mousavi Khoie, M. Aparicio, R. Hübner, F. Sol-dera, R. Gago, J. Power Sources 322 (2016) 1-9.
DOI URL |
[24] |
F. Bi, L. Feng, P. Yi, X. Lai, J. Power Sources 314 (2016) 58-65.
DOI URL |
[25] |
S. Jannat, H. Rashtchi, M. Atapoura, M.A. Golozar, H. Elmkhah, M. Zhiani, J. Power Sources 435 (2019) 226818-226827.
DOI URL |
[26] |
S. Lee, S. Woo, N. Kakati, Y. Lee, Y. Yoon, Surf. Coat. Technol. 303 (2016) 162-169.
DOI URL |
[27] |
M. Faizan Khan, A.K. Adesina, Z.M. Gasem, Mater. Corros. 70 (2019) 281-292.
DOI |
[28] |
E. Haye, F. Deschamps, G. Caldarella, M.L. Piedboeuf, A. Lafort, H. Comil, J.F. Colomer, J.J. Pireaux, Int. J. Hydrogen Energy 45 (2020) 15358-15365.
DOI URL |
[29] |
S. Pugal Mani, N. Rajendran, Energy 133 (2017) 1050-1062.
DOI URL |
[30] |
R. Li, Y. Cai, K. Wippermann, W. Lehnert, J. Power Sources 434 (2019) 226718-226725.
DOI URL |
[31] |
A.G. González-Gutiérreza, M.A. Pech-Canul, G. Chan-Rosado, P.J. Sebastian, Fuel 235 (2019) 1361-1367.
DOI URL |
[32] |
S. Pugal Mani, M. Kalaiarasan, K. Ravichandran, N. Rajendran, Y. Meng, J. Mater. Sci. 56 (2021) 10575-10596.
DOI URL |
[33] |
A.M. Oladoye, J.G. Carton, K. Benyounis, J. Stokes, A.G. Olabi, Surf. Coat. Technol. 304 (2016) 384-392.
DOI URL |
[34] |
Z.Zhu J.Jin, D. Zhang, Int. J. Hydrogen Energy 42 (2017) 11758-11770.
DOI URL |
[35] |
Z. Wang, Y. Wang, Z. Li, K. Feng, J. Huang, F. Lu, C. Yao, X. Cai, Y. Wu, Surf. Coat. Technol. 258 (2014) 1068-1074.
DOI URL |
[36] |
H.C. Barshilia, B. Deepthi, N. Selvakumar, A. Jain, K.S. Rajam, Appl. Surf. Sci. 253 (2007) 5076-5083.
DOI URL |
[37] | M. Falsafein, F. Ashrafizadeh, A. kheirandish, Surf. Interfaces 13 (2018) 178-185. |
[38] |
A. Lippitz, T. Hubert, Surf. Coat. Technol. 200 (2005) 250-253.
DOI URL |
[39] | I. Bertoti, Surf. Coat. Technol. 151- 152 (2002) 194-203. |
[40] |
P. Gao, Z. Xie, X. Wu, C. Ouyang, T. Lei, P. Yang, C. Liu, J. Wang, T. Ouyang, Q. Huang, Int. J. Hydrogen Energy 43 (2018) 20947-20958.
DOI URL |
[41] |
J. Jin, D. Zheng, S. Han, J. Ma, Z. Zhu, Int. J. Hydrogen Energy. 42 (2017) 1142-1153.
DOI URL |
[42] |
S. Peng, J. Xu, Z. Li, S. Jiang, P. Munroe, Z.H. Xie, H. Lu, Ceram. Int. 46 (2020) 2743-2757.
DOI URL |
[43] |
L. Wang, Y. Tao, Z. Zhang, Y. Wang, Q. Feng, H. Wang, H. Lui, Int. J. Hydrogen Energy 44 (2019) 4940-4950.
DOI URL |
[44] |
C.Dong P.Yi, T. Zhang, K. Xiao, Y. Ji, J. Wu, X. Li, J. Power Sources 418 (2019) 42-49.
DOI URL |
[45] |
B. Rikhari, S. Pugal Mani, N. Rajendran, Carbohydr. Polym. 189 (2018) 126-137.
DOI URL |
[46] |
S. Pugal Mani, C. Anandan, N. Rajendran, RSC Adv. 5 (2015) 64466-64470.
DOI URL |
[47] |
S. Pugal Mani, Bhavna Rikhari, P. Agilan, N. Rajendran, New J. Chem. 42 (2018) 14394-14494.
DOI URL |
[48] |
H. Li, P. Guo, D. Zhang, L. Liu, Z. Wang, G. Ma, Yang Xin, P. Ke, H. Saito, A. Wang, J. Power Sources 469 (2020) 228269-228278.
DOI URL |
[49] |
L. Jiang, J.A. Syed, H. Lu, X. Meng, J. Alloy. Compd. 770 (2019) 35-47.
DOI |
[50] |
J. Jin, H. Liu, D. Zhang, Z. Zhu, Int. J. Hydrogen Energy 43 (2018) 10048-10060.
DOI URL |
[51] | S.H. Lee, V.E. Pukha, V.E. Vinogradov, N. Kakati, S.H. Jee, S.B. Cho, Y.S. Yoon, Int. J. Hydrogen Energy 44 (2013) 14284-14294. |
[52] |
V.S. Simi, A. Satish, P.S. Korrapati, N. Rajendran, Appl. Surf. Sci. 445 (2018) 320-324.
DOI URL |
[53] |
P. Yi, L. Peng, T. Zhou, H. Wu, X. Lai, J. Power Sources 230 (2013) 25-31.
DOI URL |
[54] |
P. Yi, L. Peng, T. Zhou, H. Wu, X. Lai, Int. J. Hydrogen Energy 38 (2013) 1535-1543.
DOI URL |
[55] |
Z. Chen, G. Zhang, W. Yang, B. Xu, Y. Chen, X. Yin, Y. Liu, Chem. Eng. J. 393 (2020) 124675-124686.
DOI URL |
[56] |
H. Li, P. Guo, D. Zhang, L. Liu, Z. Wang, G. Ma, Y. Xin, P. Ke, H. Saito, A. Wang, J. Power Sources 469 (2020) 228269-228278.
DOI URL |
[57] |
J. Shi, P. Zhang, Y. Han, H. Wang, X. Wang, Y. Yu, J. Sun, Int. J. Hydrogen Energy 45 (2020) 10050-10058.
DOI URL |
[58] | M. Omrani, M. Habibi, M.S. Moti, Birjandi, Int. J. Hydrogen Energy 41 (2016) 5028-5036. |
[59] |
P. Yi, C. Dong, T. Zhang, K. Xiao, Y. Ji, J. Wu, X. Li, J. Power Sources 418 (2019) 42-49.
DOI URL |
[60] |
S. Wang, M. Hou, Q. Zhao, Y. Jiang, Z. Wang, H. Li, Y. Fu, Z. Shao, J. Energy Chem. 26 (2017) 168-174.
DOI URL |
[61] |
M. Dadfar, M. Salehi, M.A. Golozar, S. Trasatti, Int. J. Hydrogen Energy 41 (2016) 21375-21384.
DOI URL |
[62] |
Y.H. Lee, S. Noh, J.H. Lee, S.H. Chun, S.W. Cha, I. Chang, Int. J. Hydrogen Energy 42 (2017) 27350-27353.
DOI URL |
[63] |
P. Yi, D. Zhang, D. Qiu, L. Peng, X. Lai, Int. J. Hydrogen Energy 44 (2019) 6813-6843.
DOI URL |
[1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[2] | Xiaodong Lin, Qunjia Peng, Yaolei Han, En-Hou Han, Wei Ke. Effect of thermal ageing and dissolved gas on corrosion of 308L stainless steel weld metal in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 96(0): 308-324. |
[3] | Xin Gai, Rui Liu, Yun Bai, Shujun Li, Yang Yang, Shenru Wang, Jianguo Zhang, Wentao Hou, Yulin Hao, Xing Zhang, Rui Yang, R.D.K. Misra. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: the significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97(0): 272-282. |
[4] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
[5] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[6] | Kai Ma, Shijie Liu, Chaoneng Dai, Xiuying Liu, Jie Ren, Yuanlang Pan, Yinhong Peng, Chen Su, Jingfeng Wang, Fusheng Pan. Effect of Ni on the microstructure, mechanical properties and corrosion behavior of MgGd1Nix alloys for fracturing ball applications [J]. J. Mater. Sci. Technol., 2021, 91(0): 121-133. |
[7] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
[8] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[9] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[10] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[11] | Yaochen Sheng, LuFang Zhang, Feng Li, Xinyu Chen, Zhijian Xie, Haiyan Nan, Zihan Xu, David Wei Zhang, Jianhao Chen, Yong Pu, Shaoqing Xiao, Wenzhong Bao. A novel contact engineering method for transistors based on two-dimensional materials [J]. J. Mater. Sci. Technol., 2021, 69(0): 15-19. |
[12] | Bright O. Okonkwo, Hongliang Ming, Jianqiu Wang, En-Hou Han, Ehsan Rahimi, Ali Davoodi, Saman Hosseinpour. A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld [J]. J. Mater. Sci. Technol., 2021, 78(0): 38-50. |
[13] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
[14] | Shanshan Hu, Harry Finkle, Xingbo Liu. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90(0): 243-254. |
[15] | Wen Sun, Yanjia Yang, Zhengqing Yang, Lida Wang, Jing Wang, Dake Xu, Guichang Liu. Review on the corrosion-promotion activity of graphene and its inhibition [J]. J. Mater. Sci. Technol., 2021, 91(0): 278-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||