J. Mater. Sci. Technol. ›› 2021, Vol. 69: 15-19.DOI: 10.1016/j.jmst.2020.05.079
• Research Article • Previous Articles Next Articles
Yaochen Shenga,1, LuFang Zhangb,1, Feng Lid,1, Xinyu Chena,1, Zhijian Xiec, Haiyan Nanb, Zihan Xue, David Wei Zhanga, Jianhao Chenc, Yong Pud,*(), Shaoqing Xiaob,*(
), Wenzhong Baoa,*(
)
Received:
2020-03-20
Revised:
2020-05-11
Accepted:
2020-05-13
Published:
2021-04-10
Online:
2021-05-15
Contact:
Yong Pu,Shaoqing Xiao,Wenzhong Bao
About author:
baowz@fudan.edu.cn (W. Bao).1These authors contributed equally to this work.
Yaochen Sheng, LuFang Zhang, Feng Li, Xinyu Chen, Zhijian Xie, Haiyan Nan, Zihan Xu, David Wei Zhang, Jianhao Chen, Yong Pu, Shaoqing Xiao, Wenzhong Bao. A novel contact engineering method for transistors based on two-dimensional materials[J]. J. Mater. Sci. Technol., 2021, 69: 15-19.
Fig. 1. Schematic diagram of the device fabrication. (a) illustrates the device processing sequence and (b) a 3D cartoon of the modified UHV chamber. Firstly, S/D electrode regions are defined by lithography and exposed after developing, then the semi-finished device is placed into the UHV chamber, which consists of a planar ICP and a magnetron sputtering system. After plasma treatment and subsequent deposition of metal electrodes, the device is taken out of the chamber and completed by removing the sacrificial photoresist.
Fig. 2. (a) IDS-VBG transfer characteristics of mechanically exfoliated MoS2 FETs subjected to H2 plasma with different treatment times and input powers. 3-4 layer MoS2 flakes were chosen for fabricating these devices. (b) Corresponding statistical mobility values of the devices with treatment recipes shown in (a). IDS-VBG transfer characteristics of CVD-synthesized monolayer MoS2 based FETs (c) without and (d) with H2 plasma treatment (100 W, 30 min). Drain-source bias is 1 V for all devices.
Fig. 3. (a) Top view of crystal structures of pristine and modified 1 L MoS2 nanosheet with top S atoms at both ends are etched by plasma. (b) The three-dimensional diagram of MoS2 FET with plasma treatment. (c) Charge densities of the valence band maximum and conduction band minimum of the MoS-MoS2-MoS nanosheet. The iso-value is 0.003 e ?-3. (d) Electronic band structure of pristine and modified monolayer MoS2 nanosheet. The Fermi energy Ef is set at 0 eV in the dashed line.
[1] |
D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P.M. Ajayan, K. Banerjee, Nature 526 (2015) 91-95.
DOI URL |
[2] |
J. Wan, S.D. Lacey, J. Dai, W. Bao, M.S. Fuhrer, L. Hu, Chem. Soc. Rev. 45 (2016) 6742-6765.
DOI URL |
[3] |
X. Song, Z. Guo, Q. Zhang, P. Zhou, W. Bao, D.W. Zhang, Small 13 (2017), 1700098.
DOI URL |
[4] | W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang, N. Fang, T. Li, Y. Wu, T. Chen, X. Xie, arXiv preprint arXiv: 1909. 09753, 2019. |
[5] | Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, Nat. Commun. 5 (2014) 1-7. |
[6] |
H. Yu, M. Liao, W. Zhao, G. Liu, X. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng, ACS Nano 11 (2017) 12001-12007.
DOI URL |
[7] | H. Tang, H. Zhang, X. Chen, Y. Wang, X. Zhang, P. Cai, W. Bao, Sci. China Information Sci. 62 (2019), 220401. |
[8] |
H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu, J. Wang, W. Hu, H. Liu, Z. Sun, C. Luo, Small 14 (2018), 1803465.
DOI PMID |
[9] |
H. Xu, H. Zhang, Y. Liu, S. Zhang, Y. Sun, Z. Guo, Y. Sheng, X. Wang, C. Luo, X. Wu, Adv. Funct. Mater. 29 (2019) 1805614.
DOI URL |
[10] |
K. Xu, Y. Zhao, Z. Lin, Y. Long, Y. Wang, M. Chan, Y. Chai, Semiconduct. Sci. Technol. 32 (2017), 124002.
DOI URL |
[11] |
C. Wirtz, T. Hallam, C.P. Cullen, N.C. Berner, M. O’Brien, M. Marcia, A. Hirsch, G.S. Duesberg, Chem. Commun. 51 (2015) 16553-16556.
DOI URL |
[12] |
S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong, C. Buie, J. Kim, C.L. Hinkle, M.J. Kim, R.M. Wallace, ACS Nano 7 (2013) 10354-10361.
DOI PMID |
[13] |
H. Liu, K. Xu, X. Zhang, P.D. Ye, Appl. Phys. Lett. 100 (2012), 152115.
DOI URL |
[14] |
H. Kim, T. Park, S. Park, M. Leem, W. Ahn, H. Lee, C. Lee, E. Lee, S.J. Jeong, S. Park, Thin Solid Films 673 (2019) 112-118.
DOI URL |
[15] |
L. Cheng, X. Qin, A.T. Lucero, A. Azcatl, J. Huang, R.M. Wallace, K. Cho, J. Kim, ACS Appl. Mater. Interfaces 6 (2014) 11834-11838.
DOI URL |
[16] |
S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13 (2013) 100-105.
DOI URL |
[17] |
H. Liu, M. Si, S. Najmaei, A.T. Neal, Y. Du, P.M. Ajayan, J. Lou, P.D. Ye, Nano Lett. 13 (2013) 2640-2646.
DOI URL |
[18] |
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, Nano Lett. 10 (2010) 1271-1275.
DOI URL |
[19] |
W. Liu, D. Sarkar, J. Kang, W. Cao, K. Banerjee, ACS Nano 9 (2015) 7904-7912.
DOI URL |
[20] |
Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H.Y. Jeong, M. Chhowalla, Nature 568 (2019) 70-74.
DOI PMID |
[21] |
J. Kang, W. Liu, K. Banerjee, Appl. Phys. Lett. 104 (2014), 093106.
DOI URL |
[22] |
L. Yu, Y.H. Lee, X. Ling, E.J. Santos, Y.C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, Nano Lett. 14 (2014) 3055-3063.
DOI URL |
[23] |
S. Song, Y. Sim, S.Y. Kim, J.H. Kim, I. Oh, W. Na, D.H. Lee, J. Wang, S. Yan, Y. Liu, J. Kwak, J.H. Chen, H. Cheong, J.W. Yoo, Z. Lee, S.Y. Kwon, Nat. Electron. 3 (2020) 207-215.
DOI URL |
[24] |
Y. Liu, J. Guo, E. Zhu, L. Liao, S.J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Nature 557 (2018) 696-700.
DOI URL |
[25] |
R. Kappra, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Nat. Mater. 13 (2014) 1128-1134.
DOI URL |
[26] |
M. Abraham, S.E. Mohney, J. Appl. Phys. 122 (2017), 115306.
DOI URL |
[27] |
M.H.D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie, C.J. Kim, D.A. Muller, D.C. Ralph, J. Park, ACS Nano 10 (2016) 6392-6399.
DOI PMID |
[28] | C.L. Lai, H.Y. Li, A. Chen, T. Lu, IEEE 66th Electronic Components and Technology Conference (ECTC), 2016, pp. 310-315. |
[29] |
S. Xiao, P. Xiao, X. Zhang, D. Yan, X. Gu, F. Qin, Z. Ni, Z.J. Han, K.K. Ostrikov, Sci. Rep. 6 (2016) 1-8.
DOI URL |
[30] |
L. Zhang, S. Feng, S. Xiao, G. Shen, X. Zhang, H. Nan, X. Gu, K.K. Ostrikov, Appl. Surf. Sci. 441 (2018) 639-646.
DOI URL |
[31] |
Y. Sha, S. Xiao, X. Zhang, F. Qin, X. Gu, Appl. Surf. Sci. 411 (2017) 182-188.
DOI URL |
[32] |
S. Das, J. Appenzeller, Nano Lett. 13 (2013) 3396-3402.
DOI URL |
[33] |
J. Kwon, J.Y. Lee, Y.J. Yu, C.H. Lee, X. Cui, J. Hone, G.H. Lee, Nanoscale 9 (2017) 6151-6157.
DOI URL |
[34] |
C. Kim, I. Moon, D. Lee, M.S. Choi, F. Ahmed, S. Nam, Y. Cho, H.J. Shin, S. Park, W.J. Yoo, ACS Nano 11 (2017) 1588-1596.
DOI URL |
[35] |
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazi´c, M. Gibertini, N. Marzari, O.L. Sanchez, Y.C. Kung, D. Krasnozhon, M.W. Chen, S. Bertolazzi, P. Gillet, A.F. Morral, A. Radenovic, A. Kis, ACS Nano 9 (2015) 4611-4620.
DOI PMID |
[1] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[2] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[3] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[4] | Pengyun Xu, Guohui Meng, Larry Pershin, Javad Mostaghimi, Thomas W. Coyle. Control of the hydrophobicity of rare earth oxide coatings deposited by solution precursor plasma spray by hydrocarbon adsorption [J]. J. Mater. Sci. Technol., 2021, 62(0): 107-118. |
[5] | Leilei Chen, Jun Xu, Yi Wang, Rongqin Huang. Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging [J]. J. Mater. Sci. Technol., 2021, 63(0): 91-96. |
[6] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
[7] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[8] | Guohua Fan, Zhongyang Wang, Kai Sun, Yao Liu, Runhua Fan. Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions [J]. J. Mater. Sci. Technol., 2021, 61(0): 125-131. |
[9] | Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 140-145. |
[10] | Ting Wu, Carsten Blawert, Mikhail L.Zheludkevich. Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process [J]. J. Mater. Sci. Technol., 2020, 50(0): 75-85. |
[11] | Zizhan Liang, Rongchen Shen, Hau Ng Yun, Peng Zhang, Quanjun Xiang, Xin Li. A review on 2D MoS2 cocatalysts in photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 89-121. |
[12] | Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 41(0): 149-158. |
[13] | Peng Chen, Shilin Zeng, Yunliang Zhao, Shichang Kang, Tingting Zhang, Shaoxian Song. Synthesis of unique-morphological hollow microspheres of MoS2@montmorillonite nanosheets for the enhancement of photocatalytic activity and cycle stability [J]. J. Mater. Sci. Technol., 2020, 41(0): 88-97. |
[14] | Qingzheng Jiang, Jie Song, Qingfang Huang, Sajjad Ur Rehman, Lunke He, Qingwen Zeng, Zhenchen Zhong. Enhanced magnetic properties and improved corrosion performance of nanocrystalline Pr-Nd-Y-Fe-B spark plasma sintered magnets [J]. J. Mater. Sci. Technol., 2020, 58(0): 138-144. |
[15] | Chenxi Wang, Hui Fang, Shicheng Zhou, Xiaoyun Qi, Fanfan Niu, Wei Zhang, Yanhong Tian, Tadatomo Suga. Recycled low-temperature direct bonding of Si/glass and glass/glass chips for detachable micro/nanofluidic devices [J]. J. Mater. Sci. Technol., 2020, 46(0): 156-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||