J. Mater. Sci. Technol. ›› 2022, Vol. 104: 67-80.DOI: 10.1016/j.jmst.2021.05.086
• Research Article • Previous Articles Next Articles
Xiaojia Yanga,b, Ying Yanga, Meihui Suna, Jinghuan Jiaa, Xuequn Chenga,*(), Zibo Peia, Qing Lia, Di Xua, Kui Xiaoc, Xiaogang Lia,*(
)
Received:
2021-04-02
Revised:
2021-05-09
Accepted:
2021-05-20
Published:
2022-03-30
Online:
2022-03-30
Contact:
Xuequn Cheng,Xiaogang Li
About author:
lixiaogang@ustb.edu.cn (X. Li).Xiaojia Yang, Ying Yang, Meihui Sun, Jinghuan Jia, Xuequn Cheng, Zibo Pei, Qing Li, Di Xu, Kui Xiao, Xiaogang Li. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology[J]. J. Mater. Sci. Technol., 2022, 104: 67-80.
Steel | C | Si | Mn | P | S | Ni | Cr |
---|---|---|---|---|---|---|---|
06Ni | 0.063 | 0.456 | 1.32 | 0.008 | 0.007 | 0.52 | |
06CrNi | 0.064 | 0.454 | 1.33 | 0.009 | 0.005 | 0.53 | 0.76 |
06Cr2Ni | 0.062 | 0.449 | 1.33 | 0.006 | 0.007 | 0.51 | 1.69 |
06Cr3Ni | 0.065 | 0.452 | 1.34 | 0.007 | 0.008 | 0.51 | 2.52 |
Table 1 Chemical composition of the weathering steels.
Steel | C | Si | Mn | P | S | Ni | Cr |
---|---|---|---|---|---|---|---|
06Ni | 0.063 | 0.456 | 1.32 | 0.008 | 0.007 | 0.52 | |
06CrNi | 0.064 | 0.454 | 1.33 | 0.009 | 0.005 | 0.53 | 0.76 |
06Cr2Ni | 0.062 | 0.449 | 1.33 | 0.006 | 0.007 | 0.51 | 1.69 |
06Cr3Ni | 0.065 | 0.452 | 1.34 | 0.007 | 0.008 | 0.51 | 2.52 |
Fig. 2. Pole-coordinates map of the relative current intensity. (a) 06Ni, (b) 06CrNi, (c) 06Cr2Ni, (d) 06Cr3Ni, subscript 1-4 represent the exposure period of 1-12, 1 and 2, 3-6, 6-12 m.
Fig. 4. Macro corrosion morphologies of the specimens after exposure for 6 months (a) and 12 months (b). Subscript 1-06Ni, Subscript 2-06CrNi, Subscript 3-06Cr2Ni, Subscript 4-06Cr3Ni.
Molecular formula | Mineral name | Color | Shape | Crystal |
---|---|---|---|---|
Fe3O4 | Magnetite | Black | Tetrahedron | Spinel |
α-Fe2O3 | Hematite | Reddish brown | Flaky | Trigonal |
α-FeOOH | Goethite | Black brown | Acicular | Tetragonal |
β-FeOOH | Akaganeite | Hazel | Acicular | Orthorhombic |
γ-FeOOH | Lepidocrocite | Aurantiacus | Acicular | Orthorhombic |
FeOCl | Iron oxychloride | Purple | Flaky | Tetragonal |
GR*(1) | Green rust 1 | Dark green | Lamellar | Rhombohedral |
Table 2 Properties of the corrosion products.
Molecular formula | Mineral name | Color | Shape | Crystal |
---|---|---|---|---|
Fe3O4 | Magnetite | Black | Tetrahedron | Spinel |
α-Fe2O3 | Hematite | Reddish brown | Flaky | Trigonal |
α-FeOOH | Goethite | Black brown | Acicular | Tetragonal |
β-FeOOH | Akaganeite | Hazel | Acicular | Orthorhombic |
γ-FeOOH | Lepidocrocite | Aurantiacus | Acicular | Orthorhombic |
FeOCl | Iron oxychloride | Purple | Flaky | Tetragonal |
GR*(1) | Green rust 1 | Dark green | Lamellar | Rhombohedral |
Fig. 6. Corrosion morphologies of the steels after corrosion products removal: (a) exposure for 6 months, (b) exposure for 12 months (Subscripts 1-4 represent 06Ni, 06CrNi, 06Cr2Ni, and 06Cr3Ni, respectively).
Fig. 7. 3D profiles of the steels after corrosion products removal: (a) exposure for 6 months, (b) exposure for 12 months (Subscripts 1-4 represent 06Ni, 06CrNi, 06Cr2Ni, and 06Cr3Ni, respectively).
Fig. 8. Statistics analysis of the pitting for the steels: (a) exposure for 6 months (Subscripts 1-4 represent 06Ni, 06CrNi, 06Cr2Ni, and 06Cr3Ni, respectively).
Fig. 9. Cross-sectional morphologies and elemental distribution of the rust layer: (a) exposure for 6 months, (b) exposure for 12 months (Subscripts 1-4 represent 06Ni, 06CrNi, 06Cr2Ni, and 06Cr3Ni, respectively).
Species | Constitutes | BE, Eb | Refs. |
---|---|---|---|
(eV)a | |||
Fe 2p3/2 | |||
Fe(II) | FeO | 709.4 | [ |
Fe(III) | Fe3O4 | 710.3 | [ |
Fe2O3 | 711.0 | [ | |
FeOOH | 712.1 | [ | |
Cr 2p3/2 | |||
Cr(III) | Cr2O3 | 576.2 | [ |
Cr(VI) | Cr(OH)3 | 577.4 | [ |
Ni 2p3/2 | |||
Ni0 | CrO3 | 578.3 | [ |
Ni(II) | Ni | 853.1 | [ |
NiO/NiCr2O4 | 855.5 | [ | |
O 1s | |||
Ni(OH)2/NiFe2O4 | 854.4 | [ | |
O2- | Metallic oxides | 530.2 | [ |
OH- | Hydroxides | 531.8 | [ |
H2O | Bound water | 532.5 | [ |
Table 3 BE and possible assignments of the component peaks used for deconvolution.
Species | Constitutes | BE, Eb | Refs. |
---|---|---|---|
(eV)a | |||
Fe 2p3/2 | |||
Fe(II) | FeO | 709.4 | [ |
Fe(III) | Fe3O4 | 710.3 | [ |
Fe2O3 | 711.0 | [ | |
FeOOH | 712.1 | [ | |
Cr 2p3/2 | |||
Cr(III) | Cr2O3 | 576.2 | [ |
Cr(VI) | Cr(OH)3 | 577.4 | [ |
Ni 2p3/2 | |||
Ni0 | CrO3 | 578.3 | [ |
Ni(II) | Ni | 853.1 | [ |
NiO/NiCr2O4 | 855.5 | [ | |
O 1s | |||
Ni(OH)2/NiFe2O4 | 854.4 | [ | |
O2- | Metallic oxides | 530.2 | [ |
OH- | Hydroxides | 531.8 | [ |
H2O | Bound water | 532.5 | [ |
Fig. 11. Detailed Fe 2p3/2 spectra: (a) exposure for 6 months, (b) exposure for 12 months (Subscripts 1-4 represent 06Ni, 06CrNi, 06Cr2Ni, and 06Cr3Ni, respectively).
Fig. 12. Detailed Cr 2p3/2 spectra: (a) exposure for 6 months, (b) exposure for 12 months (Subscripts 1-4 represent 06Ni, 06CrNi, 06Cr2Ni, and 06Cr3Ni, respectively).
Fig. 13. Detailed O 1 s spectra: (a) exposure for 6 months, (b) exposure for 12 months (Subscripts 1-4 represent 06Ni, 06CrNi, 06Cr2Ni, and 06Cr3Ni, respectively).
Fig. 14. Detailed Ni 2p3/2 spectra: (a) exposure for 6 months, (b) exposure for 12 months (Subscripts 1-4 represent 06Ni, 06CrNi, 06Cr2Ni, and 06Cr3Ni, respectively).
Steel | Period | Fe(III)/Fe(II) | FeOOH/[Fe(II)+Fe(III)] | [Cr]/[Fe] | Cr(VI)/Cr(III) | Cr(hy)/Cr(ox) | NiO/Ni(OH)2 | OH-/O2- |
---|---|---|---|---|---|---|---|---|
06Ni | 6 | 1.73 | 0.19 | - | 0.54 | 1.7 | ||
06CrNi | 6 | 1.49 | 0.22 | 0.023 | 0.18 | 0.42 | 2.18 | 1.4 |
06Cr2Ni | 6 | 1.49 | 0.22 | 0.016 | 0.72 | 0.33 | 1.29 | 0.9 |
06Cr3Ni | 6 | 1.47 | 0.22 | 0.010 | 0.89 | 0.31 | 0.73 | 0.5 |
06Ni | 12 | 2.03 | 0.22 | - | 1.85 | |||
06CrNi | 12 | 1.70 | 0.21 | 0.01 | 0.28 | 0.49 | 0.62 | 0.76 |
06Cr2Ni | 12 | 1.61 | 0.20 | 0.01 | 0.35 | 0.35 | 0.85 | 0.7 |
06Cr3Ni | 12 | 1.50 | 0.20 | 0.01 | 0.26 | 0.32 | 0.54 | 0.69 |
Table 4 XPS peak intensity ratio of the species of the rust.
Steel | Period | Fe(III)/Fe(II) | FeOOH/[Fe(II)+Fe(III)] | [Cr]/[Fe] | Cr(VI)/Cr(III) | Cr(hy)/Cr(ox) | NiO/Ni(OH)2 | OH-/O2- |
---|---|---|---|---|---|---|---|---|
06Ni | 6 | 1.73 | 0.19 | - | 0.54 | 1.7 | ||
06CrNi | 6 | 1.49 | 0.22 | 0.023 | 0.18 | 0.42 | 2.18 | 1.4 |
06Cr2Ni | 6 | 1.49 | 0.22 | 0.016 | 0.72 | 0.33 | 1.29 | 0.9 |
06Cr3Ni | 6 | 1.47 | 0.22 | 0.010 | 0.89 | 0.31 | 0.73 | 0.5 |
06Ni | 12 | 2.03 | 0.22 | - | 1.85 | |||
06CrNi | 12 | 1.70 | 0.21 | 0.01 | 0.28 | 0.49 | 0.62 | 0.76 |
06Cr2Ni | 12 | 1.61 | 0.20 | 0.01 | 0.35 | 0.35 | 0.85 | 0.7 |
06Cr3Ni | 12 | 1.50 | 0.20 | 0.01 | 0.26 | 0.32 | 0.54 | 0.69 |
[1] |
M. Morcillo, I. Díaz, H. Cano, B. Chico, D. de la Fuente, Constr. Build. Mater. 213 (2019) 723-737.
DOI |
[2] | V.B. Raja, K. Palanikumar, R.R. Renish, A.G. Babu, J. Varma, P. Gopal, Mater. To-day 46 (2021) 3572-3577. |
[3] |
J.J. Santana, A. Ramos, A. Rodriguez-Gonzalez, H.C. Vasconcelos, V. Mena, B.M. Fernández-Pérez, R.M. Souto, Metals 9 (2019) 1105.
DOI URL |
[4] |
J. Jia, X. Cheng, X. Yang, X. Li, W. Li, Constr. Build. Mater. 259 (2020) 119760.
DOI URL |
[5] | S. Raffo, I. Vassura, C. Chiavari, C. Martini, M.C. Bignozzi, F. Passarini, E. Bernardi, Environ. Pollt. 213 (2016) 571-584. |
[6] |
B. Sun, X. Zuo, X. Cheng, X. Li, NPJ Mater. Degrad. 4 (2020) 23.
DOI URL |
[7] |
M. Morcillo, B. Chico, I. Diaz, H. Cano, D. Fuente, Corros. Sci. 77 (2013) 6-24.
DOI URL |
[8] | Y. Fan, W. Liu, S. Li, B. Wongpat, X. Li, J. Mater. Sci. Technol. 39 (2020) 185-194. |
[9] |
S. Feliu, M. Morcillo, S. Feliu Jr, Corros. Sci. 34 (1993) 415-422.
DOI URL |
[10] |
Z. Cui, X. Li, K. Xiao, C. Dong, Corros. Sci. 76 (2013) 243-256.
DOI URL |
[11] |
W. Wei, Z. Dai, Z. Liu, C. Liu, X. Li, Corros. Sci. 183 (2021) 109353.
DOI URL |
[12] |
X. Xu, T. Zhang, W. Wu, S. Jiang, J. Yang, Z.Y. Liu, Constr. Build. Mater. 279 (2021) 122341.
DOI URL |
[13] |
W. Xue, Z. Li, K. Xiao, W. Yu, J. Song, J. Chen, C. Dong, X. Li, Corros. Sci. 163 (2020) 108232.
DOI URL |
[14] |
T. Zhang, X. Xu, Y. Li, X. Lv, Constr. Build. Mater. 277 (2021) 122298.
DOI URL |
[15] |
I. Díaz, H. Cano, P. Lopesino, D. de la Fuente, B. Chico, J.A. Jiménez, S.F. Medina, M. Morcillo, Corros. Sci. 141 (2018) 146-157.
DOI URL |
[16] |
Y. Wang, J. Li, Q. Wang, T. Wang, Corros. Sci. 183 (2021) 109322.
DOI URL |
[17] |
Y. Wang, C.M. Li, L. Zhang, L. Zhang, Q. Wang, T. Wang, Corros. Sci. 177 (2020) 108997.
DOI URL |
[18] |
Y. Qian, C. Ma, D. Niu, J. Xu, M. Li, Corros. Sci. 74 (2013) 424-429.
DOI URL |
[19] |
Y. Qian, D. Niu, J. Xu, M. Li, Corros. Sci. 71 (2013) 72-77.
DOI URL |
[20] | C. Larabee, S. Coburn, Proc. 1st Int. Cong. Met. Corros. (1961) 276-285. |
[21] |
T. Kamimura, M. Stratmann, Corros. Sci. 43 (2001) 429-447.
DOI URL |
[22] |
H. Schwitter, H. Boehni, J. Electrochem. Soc. 127 (1980) 15-20.
DOI URL |
[23] | A. White, MRS Bull. 37 (2012) 715-716. |
[24] |
X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, C. Dong, Nature 527 (2015) 441-442.
DOI URL |
[25] |
Z. Pei, D. Zhang, Y. Zhi, Y. Tao, L. Jin, D. Fu, X. Cheng, H.A. Terryn, M.C. Mol, X. Li, Corros. Sci. 170 (2020) 108697.
DOI URL |
[26] |
Z. Pei, X. Cheng, X. Yang, Q. Li, C. Xia, D. Zhang, X. Li, J. Mater. Sci. Technol. 64 (2020) 214-221.
DOI URL |
[27] |
P. Dillmann, F. Mazaudier, S. Hoerlé, Corros. Sci. 46 (2004) 1401-1429.
DOI URL |
[28] |
S.M. Gravano, J.R. Galvele, Corros. Sci. 24 (1984) 517-534.
DOI URL |
[29] |
J.R. Galvele, Corros. Sci. 21 (1981) 551-579.
DOI URL |
[30] |
G.S. Frankel, J. Electrochem. Soc. 145 (1998) 2186-2197.
DOI URL |
[31] |
S. Feng, Y. Li, H. Liu, C. Chen, J. Nat. Gas Sci. Eng. 80 (2020) 103395.
DOI URL |
[32] |
M. Stratmann, K. Bohnenkamp, H.J. Engell, Corros. Sci. 23 (1983) 969-985.
DOI URL |
[33] |
U.R. Evans, C.A.J. Taylor, Corros. Sci. 12 (1972) 227-246.
DOI URL |
[34] |
T. Misawa, Y. Kyuno, W. Suëtaka, S. Shimodaira, Corros. Sci. 11 (1971) 35-48.
DOI URL |
[35] |
H. Cano, Constr. Build. Mater. 222 (2019) 750-765.
DOI URL |
[36] |
L. Freire, M. Catarino, M. Godinho, M.J. Ferreira, Cem. Concr. Compos. 34 (2012) 1075-1081.
DOI URL |
[37] |
B. Zhang, S. Hao, J. Wu, X. Li, Y. Huang, Mater. Charact. 131 (2017) 168-174.
DOI URL |
[38] |
L. Wei, K. Gao, J. Alloy. Compd. 792 (2019) 328-340.
DOI URL |
[39] |
Q. Lu, L. Wang, J. Xin, H. Tian, Z. Cui, Constr. Build. Mater. 238 (2020) 117763.
DOI URL |
[40] |
A. Brooks, C. Clayton, K. Doss, Y. Lu, J. Electrochem. Soc. 133 (1986) 2459-2464.
DOI URL |
[41] |
G. Li, L. Wang, H. Wu, C. Liu, Z. Cui, Corros. Sci. 174 (2020) 108815.
DOI URL |
[42] |
H. Pan, L. Wang, Y. Lin, F. Ge, K. Zhao, X. Wang, Z. Cui, J. Mater. Sci. Technol. 54 (2020) 1-13.
DOI URL |
[43] |
J. Duan, B. Hou, Z. Yu, Mater. Sci. Eng. C 26 (2006) 624-629.
DOI URL |
[44] |
X. Wang, H. Luo, J. Luo, Electrochim. Acta 293 (2019) 60-77.
DOI URL |
[45] | G.C. Allen, M.T. Curtis, A.J. Hooper, P.M. Tucker, J. Chem. Soc. Dalton Trans. 14 (1974) 1525-1530. |
[46] |
J. Yao, D.D. Macdonald, C. Dong, Corros. Sci. 146 (2019) 221-232.
DOI URL |
[47] |
L.Q. Guo, M.C. Lin, L.J. Qiao, A.A. Volinsky, Corros. Sci. 78 (2014) 55-62.
DOI URL |
[48] |
N. Chen, W. Zhang, W. Yu, Mater. Lett. 55 (2002) 230-233.
DOI URL |
[49] |
Y. Dou, S. Han, L. Wang, X.Z. Cui, Corros. Sci. 165 (2020) 108405.
DOI URL |
[50] |
S.J. Yuan, S.O. Pehkonen, Colloid Surf. B 59 (2007) 87-99.
DOI URL |
[51] |
M. Monnot, R.P. Nogueira, V. Roche, Appl. Surf. Sci. 394 (2017) 132-141.
DOI URL |
[52] |
Q. Hou, Z. Liu, C. Li, Z. Liu, Corros. Sci. 128 (2017) 154-163.
DOI URL |
[53] |
X. Yang, C. Du, H. Wan, Z. Liu, X. Li, Appl. Surf. Sci. 458 (2018) 198-209.
DOI URL |
[54] |
X. Cheng, Y. Wang, C. Dong, X. Li, Corros. Sci. 134 (2018) 122-130.
DOI URL |
[55] |
X. Yang, J. Shao, Z. Liu, D. Zhang, X. Li, Corros. Sci. 173 (2020) 108746.
DOI URL |
[1] | Bangalore Gangadharacharya Koushik, Nils Van den Steen, Mesfin Haile Mamme, Yves Van Ingelgem, Herman Terryn. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate [J]. J. Mater. Sci. Technol., 2021, 62(0): 254-267. |
[2] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[3] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
[4] | Chuang Qiao, Mingna Wang, Long Hao, Xiahe Liu, Xiaolin Jiang, Xizhong An, Duanyang Li. Temperature and NaCl deposition dependent corrosion of SAC305 solder alloy in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2021, 75(0): 252-264. |
[5] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[6] | Pan Liu, Qinhao Zhang, Xinran Li, Jiming Hu, Fahe Cao. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64(0): 99-113. |
[7] | Yuanjie Zhi, Tao Yang, Dongmei Fu. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 202-210. |
[8] | Yueming Fan, Wei Liu, Shimin Li, Thee Chowwanonthapunya, Banthukul Wongpat, Yonggang Zhao, Baojun Dong, Tianyi Zhang, Xiaogang Li. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion [J]. J. Mater. Sci. Technol., 2020, 39(0): 190-199. |
[9] | Xiao Lu, Yuwei Liu, Miaoran Liu, Zhenyao Wang. Corrosion behavior of copper T2 and brass H62 in simulated Nansha marine atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(9): 1831-1839. |
[10] | Hongguang Liu, Fuyong Cao, Guang-Ling Song, Dajiang Zheng, Zhiming Shi, Mathew S. Dargusch, Andrej Atrens. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 2003-2016. |
[11] | Bo Liu, Xin Mu, Ying Yang, Long Hao, Xueyong Ding, Junhua Dong, Zhe Zhang, Huaxing Hou, Wei Ke. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(7): 1228-1239. |
[12] | Min Cao, Li Liu, Zhongfen Yu, Lei Fan, Ying Li, Fuhui Wang. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35(4): 651-659. |
[13] | Chuang Qiao, Lianfeng Shen, Long Hao, Xin Mu, Junhua Dong, Wei Ke, Jing Liu, Bo Liu. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(10): 2345-2356. |
[14] | Haigang Xiao, Wei Ye, Xiaoping Song, Yuantai Ma, Ying Li. Formation process of akaganeite in the simulated wet-dry cycles atmospheric environment [J]. J. Mater. Sci. Technol., 2018, 34(8): 1387-1396. |
[15] | Pan Chen, Lv Wangyan, Wang Zhenyao, Su Wei, Wang Chuan, Liu Shinian. Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere [J]. J. Mater. Sci. Technol., 2017, 33(6): 587-595. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||