J. Mater. Sci. Technol. ›› 2022, Vol. 104: 81-87.DOI: 10.1016/j.jmst.2021.06.062
• Research Article • Previous Articles Next Articles
Shengfeng Zhoua,*(), Min Xieb, Changyi Wuc, Yanliang Yia, Dongchu Chend, Lai-Chang Zhange,*(
)
Received:
2021-04-28
Revised:
2021-06-11
Accepted:
2021-06-29
Published:
2022-03-30
Online:
2021-09-08
Contact:
Shengfeng Zhou,Lai-Chang Zhang
About author:
l.zhang@ecu.edu.au,1 Both authors contributed equally to this work.
Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms[J]. J. Mater. Sci. Technol., 2022, 104: 81-87.
Cr | Ni | Mo | C | Si | Mn | S | P | Fe |
---|---|---|---|---|---|---|---|---|
16.42 | 11.24 | 2.12 | 0.03 | 0.37 | 1.42 | 0.011 | 0.04 | Bal. |
Table 1 The chemical composition (wt.%) of 316L stainless steel powder used during SLM.
Cr | Ni | Mo | C | Si | Mn | S | P | Fe |
---|---|---|---|---|---|---|---|---|
16.42 | 11.24 | 2.12 | 0.03 | 0.37 | 1.42 | 0.011 | 0.04 | Bal. |
Laser power (W) | Laser scanning speed (mm/s) | Spot size (μm) | Layer thickness (μm) |
---|---|---|---|
195 | 287 | 100 | 50 |
Table 2 The optimized parameters adopted to produce the Cu-Fe-based immiscible alloys.
Laser power (W) | Laser scanning speed (mm/s) | Spot size (μm) | Layer thickness (μm) |
---|---|---|---|
195 | 287 | 100 | 50 |
Fig. 1. (a) XRD patterns of SLM-produced Cu-Fe-based immiscible alloy and Fe-based alloy powder, (b) the cross-section microstructure of Cu-Fe-based immiscible alloy and the magnified image presented in the right inset, (c) representative EBSD image of Cu-rich matrix, (d) distribution of grain boundary misorientation angle for Cu-rich matrix, (e) bright-field TEM image of Cu-rich matrix and the SAED pattern of grain A corresponding to the fcc structure along [011] zone axis presented in the inset on left bottom. The inset on the right top shows a magnified TEM image of Cu grain, (f, g) bight-field TEM image of Fe-rich particle embedded within Cu-rich matrix, the SAED pattern and magnified image of stacking faults and twin boundaries presented in the inset.
Fig. 2. (a) Tensile engineering stress-strain curves of SLM-produced Cu-Fe-based immiscible alloy and traditional pure copper, (b) the engineering stress and engineering strain of the SLM-produced Cu-Fe-based immiscible alloy and other Cu-Fe-based immiscible alloy produced by traditional techniques, (c) the work hardening rates of SLM-produced Cu-Fe-based immiscible alloy and traditional pure copper.
Fig. 3. The fracture morphologies after tensile tests for (a) traditional pure Cu and the magnified image presented in the right inset, (b) the SLM-produced Cu-Fe-based immiscible alloy, (c) cleavage fracture with river pattern in the γ-Fe particles, and (d) equiaxed dimples in the ε-Cu matrix.
Fig. 4. Bright-field TEM images of dislocation distributions in the SLM-produced Cu-Fe-based immiscible alloy after tensile tests: (a) interactions of ε-Cu matrix and dislocations, and the magnified image of dislocation presented in the left inset, (b, c) interactions of stacking faults and dislocations, and the circled regions corresponding to the SAED of stacking faults and the magnified image of dislocation presented in the inset, (d, e) interactions of γ-Fe particles and dislocations.
[1] |
J. He, J.Z. Zhao, L. Ratke, Acta Mater. 54 (2006) 1749-1757.
DOI URL |
[2] |
S. Zhou, C. Wu, T. Zhang, Z. Zhang, Scr. Mater. 76 (2014) 25-28.
DOI URL |
[3] |
S. Zhao, S. Zhou, M. Xie, X. Dai, D. Chen, L.C. Zhang, J. Mater. Res. Technol. 8 (2019) 2001-2010.
DOI URL |
[4] |
R.P. Shi, C.P. Wang, D. Wheeler, X.J. Liu, Y. Wang, Acta Mater. 61 (2013) 1229-1243.
DOI URL |
[5] |
B. Ma, J. Li, Z. Xu, Z. Peng, Appl. Energy 132 (2014) 568-574.
DOI URL |
[6] |
T. Nagase, M. Suzuki, T. Tanaka, J. Alloys Compd. 619 (2015) 267-274.
DOI URL |
[7] |
S. Zhou, J. Lei, Z. Xiong, X. Dai, J. Guo, Z. Gu, Mater. Des. 97 (2016) 431-436.
DOI URL |
[8] |
X. Su, J. He, B. Chen, L. Zhang, H. Jiang, J. Zhao, H. Hao, J. Mater. Sci. Technol. 44 (2020) 201-208.
DOI URL |
[9] |
N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, N.E. Khlebova, V.I. Pantsyrny, Mater. Sci. Eng. A 564 (2013) 264-272.
DOI URL |
[10] |
Z.W. Wu, J.J. Liu, Y. Chen, L. Meng, J. Alloys Compd. 467 (2009) 213-218.
DOI URL |
[11] | P. Zhang, Q. Lei, X. Yuan, X. Sheng, D. Jiang, Y. Li, Z. Li, Mater. Today Commun. 25 (2020) 101353. |
[12] |
M. Wang, R. Zhang, Z. Xiao, S. Gong, Y. Jiang, Z. Li, J. Alloys Compd. 820 (2020) 153323.
DOI URL |
[13] |
P. Xue, B.L. Xiao, Z.Y. Ma, Scr. Mater. 68 (2013) 751-754.
DOI URL |
[14] |
Y.S. Li, Y. Zhang, N.R. Tao, K. Lu, Scr. Mater. 59 (2008) 475-478.
DOI URL |
[15] |
X.H. Chen, L. Lu, K. Lu, Scr. Mater. 64 (2011) 311-314.
DOI URL |
[16] |
Y.M. Wang, E. Ma, Acta Mater 52 (2004) 1699-1709.
DOI URL |
[17] |
L.C. Zhang, H. Attar, Adv. Eng. Mater. 18 (2016) 463-475.
DOI URL |
[18] |
J.C. Wang, Y.J. Liu, C.D. Rabadia, S.X. Liang, T.B. Sercombe, L.C. Zhang, J. Mater. Sci. Technol. 61 (2021) 221-233.
DOI URL |
[19] |
P. Qin, L.Y. Chen, C.H. Zhao, Y.J. Liu, C.D. Cao, H. Sun, L.C. Zhang, Corros. Sci. 189 (2021) 109609.
DOI URL |
[20] |
A. Zafari, K. Xia, Mater. Res. Lett. 9 (2021) 247-254.
DOI URL |
[21] |
Y.B. Wang, X.Z. Zhao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Lang-don, Y.T. Zhu, Mater. Sci. Eng. A 527 (2010) 4959-4966.
DOI URL |
[22] |
S. Bahl, S. Suwas, T. Ungar, K. Chatterjee, Acta Mater 122 (2017) 138-151.
DOI URL |
[23] |
Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Adv. Mater. 18 (2006) 2280-2283.
DOI URL |
[24] |
I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Prog. Mater. Sci. 94 (2018) 462-540.
DOI URL |
[25] |
X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, Y.T. Zhu, Appl. Phys. Lett. 84 (2004) 3564-3566.
DOI URL |
[26] | D. Rosenthal, Trans. ASME 43 (1946) 849-856. |
[27] |
J. Huang, X. Yan, C. Chang, Y. Xie, Ma W, R. Huang, R. Zhao, S. Li, M. Liu, H. Liao, Surf. Coat. Technol. 395 (2020) 125936.
DOI URL |
[28] |
H. Tanaka, Phys. Rev. Lett. 72 (1994) 1702-1705.
DOI URL |
[29] |
K.Y. Yu, D. Bufford, Y. Chen, Y. Liu, H. Wang, X. Zhang, Appl. Phys. Lett. 103 (2013) 181903.
DOI URL |
[30] |
X. Zhang, A. Misra, H. Wang, T. Shen, M. Nastasi, T. Mitchell, J. Hirth, R. Hoagland, J. Embury, Acta Mater 52 (2004) 995-1002.
DOI URL |
[31] |
K. Lu, L. Lu, S. Suresh, Science 324 (200) 349-352.
DOI URL |
[32] |
D. Bufford, H. Wang, X. Zhang, Acta Mater 59 (2011) 93-101.
DOI URL |
[33] |
D. Lin, M. Motlag, M. Saei, S. Jin, R.M. Rahimi, D. Bahr, G.J. Cheng, Acta Mater 150 (2018) 360-372.
DOI URL |
[34] |
B. Geng, Y. Li, R. Zhou, Q. Wang, Y. Jiang, Mater. Charact. 170 (2020) 110691.
DOI URL |
[35] |
Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia, Appl. Phys. Lett. 92 (2008) 081903.
DOI URL |
[36] |
X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 66 (2012) 227-230.
DOI URL |
[37] |
Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, K. Lu, Scr. Mater. 52 (2005) 989-994.
DOI URL |
[38] | K. Wei, L. Xiao, B. Gao, L. Li, Y. Liu, Z. Ding, W. Liu, H. Zhou, Y. Zhao, J. Magne-sium Alloys 8 (2020) 1221-1227. |
[39] |
B.S. Guo, M. Song, X.M. Zhang, Y.Z. Liu, X. Cen, B. Chen, W. Li, Compos. B-Eng. 211 (2021) 108646.
DOI URL |
[40] |
H.K.D.H. Bhadeshia, Scr. Mater. 66 (2012) 955.
DOI URL |
[41] |
C.X. Huang, W.P. Hu, Q.Y. Wang, Mater. Res. Lett. 3 (2014) 88-94.
DOI URL |
[42] |
C.L. Yang, Z.J. Zhang, S.J. Li, Y.J. Liu, T.B. Sercombe, W.T. Hou, P. Zhang, Y.K. Zhu, Y.L. Hao, Z.F. Zhang, R. Yang, Mater. Des. 157 (2018) 52-59.
DOI URL |
[43] |
H.V. Swygenhoven, P.M. Derlet, A.G. Frøseth, Acta Mater 54 (2006) 1975-1983.
DOI URL |
[1] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[2] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[3] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[4] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[5] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[6] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[7] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[8] | Decheng Kong, Chaofang Dong, Xiaoqing Ni, Zhang Liang, Xiaogang Li. In-situ observation of asymmetrical deformation around inclusion in a heterogeneous additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 89(0): 133-140. |
[9] | Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 91(0): 215-223. |
[10] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[11] | Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase [J]. J. Mater. Sci. Technol., 2021, 62(0): 203-213. |
[12] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[13] | Yuyang Tang, Yuqing Li, Xiaochang Xu, Ming Yue, Weiqiang Liu, Hongguo Zhang, Qingmei Lu, Weixing Xia. Analysis on deformation and texture formation mechanism of hot-deformed Nd-Fe-B magnets based on heterogeneous structure evolution [J]. J. Mater. Sci. Technol., 2021, 80(0): 28-35. |
[14] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[15] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||