J. Mater. Sci. Technol. ›› 2022, Vol. 104: 88-97.DOI: 10.1016/j.jmst.2021.06.054
• Research Article • Previous Articles Next Articles
Kun Liua, Jia-ao Wangb, Hongfei Zhengc, Xiaodong Suna, Zhimo Yanga, Jianzong Mana, Xinyu Wanga, Juncai Suna,*(
)
Received:2021-04-22
Revised:2021-06-14
Accepted:2021-06-20
Published:2022-03-30
Online:2022-03-30
Contact:
Juncai Sun
About author:* E-mail address: sunjc@dlmu.edu.cn (J. Sun).1 These authors contributed equally to this work.
Kun Liu, Jia-ao Wang, Hongfei Zheng, Xiaodong Sun, Zhimo Yang, Jianzong Man, Xinyu Wang, Juncai Sun. Direct synthesis of tin spheres/nitrogen-doped porous carbon composite by self-formed template method for enhanced lithium storage[J]. J. Mater. Sci. Technol., 2022, 104: 88-97.
Fig. 1. Morphological characterization: (a) Schematic diagram of the preparation procedure for Sn/NPC, (b-c) SEM images of Sn/PC, (d-e) SEM images and (f) EDS mappings of Sn/NPC, (g-h) TEM and (i) HRTEM images of Sn/NPC.
Fig. 2. Structural and surface elemental characterizations of Sn/PC and Sn/NPC: (a) XRD patterns, (b) Raman spectra, (c) TGA curve, (d) N2 adsorption/desorption isotherms, (e) Pore-size distribution. (f) XPS survey spectrum for Sn/PC and Sn/NPC. High-resolution XPS spectrum of (g) Sn 3d, (h) C 1s and (i) N 1s for Sn/NPC.
Fig. 3. Electrochemical properties: (a) CV profiles of Sn/NPC electrode. (b) Cycling performance of both electrodes and CE of Sn/NPC electrode at 0.1 A/g. (c) GCD curves of Sn/NPC electrode. (d) Rate capability of both electrodes. (e) Charge/discharge profiles of Sn/NPC electrode ranging from 0.1 to 3 A/g. (f) EIS spectrum and (g) LSV of both electrodes. (h) Long cycling performance and CE of Sn/NPC electrode at 3 A/g.
Fig. 4. Kinetics analyses of Sn/NPC: (a) GITT curves and (b) the Li+ diffusion coefficients. (c) CV curves measured from 0.1 to 1 mV/s. (d) Relationship between log (i) versus log (v). (e) Capacitive-controlled contribution at 0.2 mV/s. (f) The percentage of capacitive and diffusion-controlled contributions.
Fig. 5. First-principles calculations: Calculated partial density of states (PDOS) for (a) Sn/NPC and (b) Sn/PC. The Li+ diffusion energy barrier for (c) Sn/NPC and (d) Sn/PC. Theoretical simulations of Li atom adsorption. Top view of Li atom adsorbed in (e) N doping, (f) graphitic-N doped, (g) pyrrolic-N, (h) pyridinic-N doped C structures and the corresponding adsorption energies.
Fig. 6. Phase evolution during the initial lithiation/delithiation process. (a) In-situ XRD analysis of Sn/NPC electrode at 200 mA/g: contour plot (the left), XRD patterns of Sn, Li2Sn5, LiSn, and Li7Sn3 (the top), and corresponding charge/discharge profiles (the right). In-situ XRD patterns of the first (b) discharge and (c) charge process.
Fig. 7. Electrochemical features of Sn/NPC||LiCoO2 full cell: (a) Schematic diagram of the full cell. (b) GCD curves and (c) cycling performance at 0.1 A/g. (d) Rate capability and (e) corresponding GCD curves. (f) Cycling performance at 1 A/g.
| [1] |
Y.J. Zhu, M. Yang, Q.Y. Huang, D.R. Wang, R.B. Yu, J.Y. Wang, Z.J. Zheng, D. Wang, Adv. Mater. 32 (2020) 1906205-1906211.
DOI URL |
| [2] |
C. Yu, X. Tian, Z. Xiong, Z. Zhang, Z. Sun, X. Piao, J. Alloy. Compd. 869 (2021) 159124-159132.
DOI URL |
| [3] |
M. Liang, Y. Huang, Y. Lin, G. Liang, C. Huang, L. Chen, J. Li, Q. Feng, C. Lin, Z. Huang, J. Mater. Sci. Technol. 83 (2021) 66-74.
DOI URL |
| [4] |
C. Zhua, Y. Zhang, Z. Wu, Z. Ma, X. Guo, F. Guo, J. Zhang, Y. Li, J. Mater. Sci. Technol. 87 (2021) 18-28.
DOI URL |
| [5] | Z. Zhao, Z. Wang, D.K. Denis, X. Sun, J. Zhang, L. Hou, X. Zhang, C. Yuan, Elec-trochim. Acta 307 (2019) 20-29. |
| [6] |
R. Mo, X. Tan, F. Li, R. Tao, J. Xu, D. Kong, Z. Wang, B. Xu, X. Wang, C. Wang, J. Li, Y. Peng, Y. Lu, Nat. Commun. 11 (2020) 1374.
DOI URL |
| [7] |
Y. Tang, C. Bi, D. Zhang, G. Hou, H. Cao, L. Wu, G. Zheng, Q. Wu, Micropor. Mesopor. Mat. 274 (2019) 76-82.
DOI URL |
| [8] |
X. Dong, W. Liu, X. Chen, J. Yan, N. Li, S. Shi, S. Zhang, X. Yang, Chem. Eng. J. 350 (2018) 791-798.
DOI URL |
| [9] |
Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M.R. Zachariah, C. Wang, Nano Lett. 13 (2013) 470-474.
DOI URL |
| [10] | A. Nurpeissova, A. Adi, A. Aishova, A. Mukanova, S.-S. Kim, Z. Bakenov, Mater. Today Energy 16 (2020) 100397-1003104. |
| [11] |
R. Miyazaki, T. Hihara, J. Power Sources 427 (2019) 15-20.
DOI |
| [12] |
X. Huang, S. Cui, J. Chang, P.B. Hallac, C.R. Fell, Y. Luo, B. Metz, J. Jiang, P.T. Hur-ley, J. Chen, Angew. Chem. Int. Ed. 54 (2015) 1490-1493.
DOI URL |
| [13] |
Y. Cheng, Z. Yi, C. Wang, Y. Wu, L. Wang, Chem. Eng. J. 330 (2017) 1035-1043.
DOI URL |
| [14] |
S. Niu, Z. Wang, M. Yu, M. Yu, L. Xiu, S. Wang, X. Wu, J. Qiu, ACS Nano 12 (2018) 3928-3937.
DOI URL |
| [15] |
Y. Li, C. Ou, J. Zhu, Z. Liu, J. Yu, W. Li, H. Zhang, Q. Zhang, Z. Guo, Nano Lett. 20 (2020) 2034-2046.
DOI URL |
| [16] |
X. Tao, R. Wu, Y. Xia, H. Huang, W. Chai, T. Feng, Y. Gan, W. Zhang, ACS Appl. Mater. Interfaces 6 (2014) 3696-3702.
DOI URL |
| [17] |
Y. Zhang, L. Jiang, C. Wang, Nanoscale 7 (2015) 11940-11944.
DOI URL |
| [18] | Y. Zhang, G. Wu, Y. Shi, Y. Hu, Y. Sun, Z. Ju, Q. Zhuang, Chemistry Select 4 (2019) 1285-1291. |
| [19] |
Z. Zhu, S. Wang, J. Du, Q. Jin, T. Zhang, F. Cheng, J. Chen, Nano Lett 14 (2014) 153-157.
DOI URL |
| [20] |
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu, Y. Liu, Z. Liang, R. Peng, P. Si, J. Lou, J. Feng, L. Ci, Adv. Energy Mater. 8 (2018) 1802386.
DOI URL |
| [21] |
C. Guo, Q. Yang, J. Liang, L. Wang, Y. Zhu, Y. Qian, Mater. Lett. 184 (2016) 332-335.
DOI URL |
| [22] |
X. Hu, X. Sun, S.J. Yoo, B. Evanko, Fengru Fan, S. Cai, C. Zheng, W. Hu, G.D. Stuck, Nano Energy 56 (2019) 828-839.
DOI URL |
| [23] |
J. Cui, H. Zhang, Y. Liu, S. Li, W. He, J. Hu, J. Sun, Electrochim. Acta 334 (2020) 135619-135628.
DOI URL |
| [24] |
W. Wang, Z. Du, J. Qian, F. Chen, Mater. Lett. 259 (2020) 126827-126830.
DOI URL |
| [25] |
R. Dai, W. Sun, Y. Wang, Electrochim. Acta 217 (2016) 123-131.
DOI URL |
| [26] |
Y. Pan, L. Yin, M. Li, Ceram. Int. 45 (2019) 12072-12079.
DOI URL |
| [27] |
Y. Guo, X. Zeng, Y. Zhang, Z. Dai, H. Fan, Y. Huang, W. Zhang, H. Zhang, J. Lu, F. Huo, Q. Yan, ACS Appl. Mater. Interfaces 9 (2017) 17172-17177.
DOI URL |
| [28] |
G. Liu, M. Huang, Z. Zhang, B. Xi, H. Li, S. Xiong, J. Energy Chem. 53 (2021) 175-184.
DOI URL |
| [29] |
T. Wang, D. Legut, Y. Fan, J. Qin, X. Li, Q. Zhang, Nano Lett. 20 (2020) 6199-6205.
DOI URL |
| [30] |
C. Guo, W.C. Zhang, Y. Liu, J.P. He, S. Yang, M.K. Liu, Q.H. Wang, Z.P. Guo, Adv. Funct. Mater. 29 (2019) 1901925-1901932.
DOI URL |
| [31] |
H. Ying, S. Zhang, Z. Meng, Z. Sun, W. Han, J. Mater. Chem. A 5 (2017) 8334-8342.
DOI URL |
| [32] |
R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, M. Zhu, Adv. Mater. 29 (2017) 1605006-1605015.
DOI URL |
| [33] | B. Ma, J. Luo, X. Deng, Z. Wu, Z. Luo, X. Wang, Y. Wang, ACS Appl. Nano Mater. 12 (2018) 6989-6999. |
| [34] |
L. Ma, X. Shen, G. Zhu, Z. Ji, H. Zhou, Carbon 77 (2014) 255-265.
DOI URL |
| [35] |
W. Ni, J.L. Cheng, L.Y. Shi, X.D. Li, B. Wang, Q. Guan, L. Huang, G.F. Gu, H. Li, J. Mater. Chem. A 2 (2014) 19122-19130.
DOI URL |
| [36] |
D.H. Youn, A. Heller, C.B. Mullins, Chem. Mater. 28 (2016) 1343-1347.
DOI URL |
| [37] |
L. Sun, T. Ma, J. Zhang, X. Guo, C. Yan, X. Liu, Electrochim. Acta 321 (2019) 134672-134679.
DOI URL |
| [38] |
F. Zhang, Y. Wang, W. Guo, S. Rao, P. Mao, Chem. Eng. J. 360 (2019) 1509-1516.
DOI URL |
| [39] |
F. Zhang, Y. Wang, W. Guo, P. Mao, S. Rao, P. Xiao, J. Alloy Compd. 829 (2020) 154579-154587.
DOI URL |
| [40] |
H. Zhang, X. Huang, O. Noonan, L. Zhou, C. Yu, Adv. Funct. Mater. 27 (2017) 1606023-1606028.
DOI URL |
| [41] |
L. Ao, C. Wu, Y. Xu, X. Wang, K. Jiang, L. Shang, Y. Li, J. Zhang, Z. Hu, J. Chu, J. Alloy Compd. 819 (2020) 153036-153048.
DOI URL |
| [42] |
W.Q. Yao, S.B. Wu, L. Zhan, Y.L. Wang, Chem. Eng. J. 361 (2019) 329-341.
DOI URL |
| [43] |
Y. Liu, N. Zhang, L. Jiao, J. Chen, Adv. Mater. 27 (2015) 6702-6707.
DOI URL |
| [44] |
L.G. Bulusheva, A.V. Okotrub, A.G. Kurenya, H.K. Zhang, H.J. Zhang, X.H. Chen, Carbon 49 (2011) 4013-4023.
DOI URL |
| [45] |
X. Ye, Z. Lin, S. Liang, X. Huang, X. Qiu, Y. Qiu, X. Liu, D. Xie, H. Deng, X. Xiong, Z. Lin, Nano Lett. 19 (2019) 1860-1866.
DOI URL |
| [46] |
Z. Wang, J. Bai, H. Xu, G. Chen, S. Kang, X. Li, J. Colloid Interf. Sci. 577 (2020) 329-336.
DOI URL |
| [47] |
Y.H. Xu, J.C. Guo, C.S. Wang, J. Mater. Chem. 22 (2012) 9562-9567.
DOI URL |
| [48] |
S. Liang, X. Zhu, P. Lian, W. Yang, H. Wang, J. Solid State Chem. 184 (2011) 1400-1404.
DOI URL |
| [49] | X. Li, Y. Zhong, M. Cai, M.P. Balogh, D. Wang, Y. Zhang, R. Li, X. Sun, Elec-trochim. Acta 89 (2013) 387-393. |
| [50] |
J.H. Lee, S.H. Oh, S.Y. Jeong, Y.C. Kang, J.S. Cho, Nanoscale 10 (2018) 21483-21491.
DOI PMID |
| [51] |
C. Gu, Y. Mai, J. Zhou, Y. You, J. Tu, J. Power Sources 214 (2012) 200-207.
DOI URL |
| [52] |
D. Song, J. Park, K. Kim, L.S. Lee, J.Y. Seo, Y.-K. Oh, Y.-J. Kim, M.-H. Ryou, Y.M. Lee, K. Lee, Electrochim. Acta 250 (2017) 59-67.
DOI URL |
| [53] |
N. Zhang, Q. Zhao, X. Han, J. Yang, J. Chen, Nanoscale 6 (2014) 2827-2832.
DOI PMID |
| [54] |
S. Gao, N. Wang, S. Li, D. Li, Z. Cui, G. Yue, J. Liu, X. Zhao, L. Jiang, Y. Zhao, Angew. Chem. Int. Ed. 59 (2020) 2465-2472.
DOI URL |
| [55] |
J. Gao, X. Cheng, S. Lou, Y. Ma, P. Zuo, C. Du, Y. Gao, G. Yin, J. Alloy. Compd. 728 (2017) 534-540.
DOI URL |
| [56] |
S.-B. Xia, L.-F. Yao, H. Guo, X. Shen, J.-M. Liu, F.-X. Cheng, J.-J. Liu, J. Power Sources 440 (2019) 227162-227170.
DOI URL |
| [57] |
M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C.K. Ande, S. van der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Pers-son, M. Asta, Sci. Data 2 (2015) 150009-150021.
DOI URL |
| [1] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
| [2] | Jian Han, Xiaonan Tang, Shaofan Ge, Ying Shi, Chengzhi Zhang, Feng Li, Shuo Bai. Si/C particles on graphene sheet as stable anode for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 259-265. |
| [3] | Zhimin Zou, Chunhai Jiang. Nitrogen-doped amorphous carbon coated mesocarbon microbeads as excellent high rate Li storage anode materials [J]. J. Mater. Sci. Technol., 2019, 35(4): 644-650. |
| [4] | Tinghuan Wu, Lixian Sun, Fen Xu, Dan Cai. Nitrogen-doped hierarchical porous carbon materials derived from diethylenetriaminepentaacetic acid (DTPA) for supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(12): 2384-2391. |
| [5] | Zou Zhimin, Li Zhaojin, Zhang Hui, Wang Xiaohui, Jiang Chunhai. Copolymerization-Assisted Preparation of Porous LiMn2O4 Hollow Microspheres as High Power Cathode of Lithium-ion Batteries [J]. J. Mater. Sci. Technol., 2017, 33(8): 781-787. |
| [6] | Opra Denis P., Gnedenkov Sergey V., Sinebryukhov Sergey L., Voit Elena I., Sokolov AlexanderA., Modin Evgeny B., Podgorbunsky Anatoly B., Sushkov Yury V., Zheleznov Veniamin V.. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol-Gel Template Route [J]. J. Mater. Sci. Technol., 2017, 33(6): 527-534. |
| [7] | Iresha R.M. Kottegoda, Xuanwen Gao, Liyanage D.C. Nayanajith, Chinthan H. Manorathne, Jun Wang, Jia-Zhao Wang, Hua-Kun Liu, Yossef Gofer. Comparison of Few-layer Graphene Prepared from Natural Graphite through Fast Synthesis Approach [J]. J. Mater. Sci. Technol., 2015, 31(9): 907-912. |
| [8] | Chunhai Jiang, Jinsong Zhang. Nanoengineering Titania for High Rate Lithium Storage: A Review [J]. J. Mater. Sci. Technol., 2013, 29(2): 97-122. |
| [9] | Yanhong Yin, Xiangnan Li, Xinxin Mao, Xianliang Ding, Shuting Yang. Solid State Reaction Preparation of LiFePO4/(C+Cu) Cathode Material and Its Electrochemical Performance [J]. J. Mater. Sci. Technol., 2013, 29(10): 937-942. |
| [10] | Hui HUANG, Chen WANG, Lei ZHANG, Yongping GAN, Wenkui ZHANG. Influences of Sintering Process of Sprayed Precursors on the Structure and Electrochemical Properties of LiMn2O4 Cathode Material [J]. J Mater Sci Technol, 2008, 24(02): 211-214. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
