J. Mater. Sci. Technol. ›› 2022, Vol. 109: 86-93.DOI: 10.1016/j.jmst.2021.09.004
• Research Article • Previous Articles Next Articles
Yupeng Diaob, Luchun Yanb,*(), Kewei Gaoa,b
Received:
2021-06-03
Revised:
2021-09-05
Accepted:
2021-09-13
Published:
2021-10-08
Online:
2021-10-08
Contact:
Luchun Yan
About author:
* E-mail address: lcyan@ustb.edu.cn (L. Yan).Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels[J]. J. Mater. Sci. Technol., 2022, 109: 86-93.
Features | Descriptor type | Descriptions | Min | Max | Mean |
---|---|---|---|---|---|
C | Composition | wt% of Carbon | 0.28 | 0.57 | 0.417 |
Si | wt% of Silicon | 0.16 | 0.50 | 0.258 | |
Mn | wt% of Manganese | 0.49 | 1.60 | 0.885 | |
P | wt% of Phosphorus | 0.007 | 0.100 | 0.017 | |
S | wt% of Sulphur | 0.003 | 0.030 | 0.015 | |
Ni | wt% of Nickel | 0.01 | 2.78 | 0.438 | |
Cr | wt% of Chromium | 0.01 | 1.12 | 0.452 | |
Cu | wt% of Copper | 0.01 | 0.22 | 0.058 | |
Mo | wt% of Molybdenum | 0.00 | 0.22 | 0.041 | |
NT | Processing condition | Normalizing temperature (°C) | 825 | 900 | 864.2 |
QT | Quenching temperature (°C) | 825 | 865 | 848.3 | |
TT | Tempering temperature (°C) | 550 | 680 | 602.0 | |
dA | Nonmetallic inclusion | Plastic work-inclusions | 0.00 | 0.13 | 0.049 |
dB | Discontinuous array inclusions | 0.00 | 0.05 | 0.004 | |
dC | Isolated inclusions | 0.00 | 0.04 | 0.008 | |
Target properties | Tensile strength (MPa) | 613.0 | 1203.0 | 882.4 | |
Fracture strength (N/mm2) | 1358.0 | 1931.0 | 1611.1 | ||
Charpy absorbed energy (J/cm2) | 43.0 | 262.0 | 159.9 | ||
Hardness | 195.0 | 380.0 | 282.7 | ||
Fatigue strength (N/mm2) | 325.0 | 638.0 | 478.4 | ||
Elongation (%) | 15.0 | 30.0 | 21.5 |
Table 1. List of the input materials descriptors and the target properties.
Features | Descriptor type | Descriptions | Min | Max | Mean |
---|---|---|---|---|---|
C | Composition | wt% of Carbon | 0.28 | 0.57 | 0.417 |
Si | wt% of Silicon | 0.16 | 0.50 | 0.258 | |
Mn | wt% of Manganese | 0.49 | 1.60 | 0.885 | |
P | wt% of Phosphorus | 0.007 | 0.100 | 0.017 | |
S | wt% of Sulphur | 0.003 | 0.030 | 0.015 | |
Ni | wt% of Nickel | 0.01 | 2.78 | 0.438 | |
Cr | wt% of Chromium | 0.01 | 1.12 | 0.452 | |
Cu | wt% of Copper | 0.01 | 0.22 | 0.058 | |
Mo | wt% of Molybdenum | 0.00 | 0.22 | 0.041 | |
NT | Processing condition | Normalizing temperature (°C) | 825 | 900 | 864.2 |
QT | Quenching temperature (°C) | 825 | 865 | 848.3 | |
TT | Tempering temperature (°C) | 550 | 680 | 602.0 | |
dA | Nonmetallic inclusion | Plastic work-inclusions | 0.00 | 0.13 | 0.049 |
dB | Discontinuous array inclusions | 0.00 | 0.05 | 0.004 | |
dC | Isolated inclusions | 0.00 | 0.04 | 0.008 | |
Target properties | Tensile strength (MPa) | 613.0 | 1203.0 | 882.4 | |
Fracture strength (N/mm2) | 1358.0 | 1931.0 | 1611.1 | ||
Charpy absorbed energy (J/cm2) | 43.0 | 262.0 | 159.9 | ||
Hardness | 195.0 | 380.0 | 282.7 | ||
Fatigue strength (N/mm2) | 325.0 | 638.0 | 478.4 | ||
Elongation (%) | 15.0 | 30.0 | 21.5 |
Fig. 2. Distribution of mechanical properties: (a) tensile strength, (b) fracture strength, (c) Charpy absorbed energy, (d) hardness, (e) fatigue strength, and (f) elongation.
Fig. 3. RMSE of test set and bootstrap set of different models. (a) tensile strength, (b) fracture strength, (c) Charpy absorbed energy, (d) hardness, (e) fatigue strength and (f) elongation.
Features set | RMSE of tensile strength | RMSE of elongation | ||
---|---|---|---|---|
Empty Cell | Test set | Bootstrap set | Test set | Bootstrap set |
All materials descriptors | 24.73 ± 3.36 | 24.06 ± 2.79 | 1.10 ± 0.11 | 0.91 ± 0.06 |
Key materials descriptors | 33.88 ± 3.65 | 32.99 ± 1.75 | 1.23 ± 0.11 | 1.18 ± 0.05 |
Table 2. Prediction accuracy of the tensile strength and elongation prediction models using all materials descriptors and key materials descriptors, respectively. The root-mean-square error (RMSE) is calculated for the observations in the test set and bootstrap set.
Features set | RMSE of tensile strength | RMSE of elongation | ||
---|---|---|---|---|
Empty Cell | Test set | Bootstrap set | Test set | Bootstrap set |
All materials descriptors | 24.73 ± 3.36 | 24.06 ± 2.79 | 1.10 ± 0.11 | 0.91 ± 0.06 |
Key materials descriptors | 33.88 ± 3.65 | 32.99 ± 1.75 | 1.23 ± 0.11 | 1.18 ± 0.05 |
[1] |
R.O. Ritchie, Nat. Mater. 10 (2011) 817-822.
DOI PMID |
[2] |
G. Han, C.J. Shang, Z.J. Xie, R.D.K. Misra, J.L. Wang, Mater. Lett. 291 (2021) 129457.
DOI URL |
[3] |
Y. Li, W. Li, W.Q. Liu, X.D. Wang, X.M. Hua, H.B. Liu, X.J. Jin, Acta Mater. 146 (2021) 126-141.
DOI URL |
[4] |
Y.F. Juan, Y.B. Dai, Y. Yang, J. Zhang, J. Mater. Sci. Technol. 79 (2021) 178-190.
DOI URL |
[5] |
Y. Zhang, C. Wen, C. Wang, S. Antonov, D. Xue, Y. Bai, Y. Su, Acta Mater. 185 (2020) 528-539.
DOI URL |
[6] |
C. Wen, Y. Zhang, C. Wang, D. Xue, Bai Y, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
[7] |
J. Yu, C. Wang, Y. Chen, C. Wang, X. Liu, Mater. Des. 195 (2020) 108996.
DOI URL |
[8] |
H. Wan, G.F. Chen, C.P. Li, X.B. Qi, G.P. Zhang, J. Mater. Sci. Technol. 35 (2019) 1137-1146.
DOI URL |
[9] |
X. Wei, D. Fu, M. Chen, W. Wu, D. Wu, C. Liu, J. Mater. Sci. Technol. 64 (2021) 222-232.
DOI URL |
[10] |
J. Li, B.B. Xie, Q.H. Fang, B. Liu, Y. Liu, P.K. Liaw, J. Mater. Sci. Technol. 68 (2021) 70-75.
DOI URL |
[11] |
C.C. Wang, C.G. Shen, Q. Cui, C. Zhang, W. Xu, J. Nucl. Mater. 529 (2020) 151823.
DOI URL |
[12] |
Y. Liu, J.M. Wu, Z.C. Wang, X.G. Lu, M. Avdeev, S.Q. Shi, C.Y. Wang, T. Yu, Acta Mater. 195 (2020) 454-467.
DOI URL |
[13] |
Y.F. Chen, Y. Tian, Y.M. Zhou, D.Q. Fang, X.D. Ding, J. Sun, D.Z. Xue, J. Alloy. Compd. 844 (2020) 156159.
DOI URL |
[14] |
Y.H. Wang, Y.F. Tian, T. Kirl, O. Laris, J.H. Ross Jr, R.D. Noebe, V. Keylin, R. Ar-róyave, Acta Mater. 194 (2020) 144-155.
DOI URL |
[15] |
R.H. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y.M. Zhou, X.D. Ding, J. Sun, D.Z. Xue, T. Lookman, Adv. Mater. 30 (2018) 1702884.
DOI URL |
[16] | J.L. Rodgers, W.A. Nicewander, Am. Stat. 42 (1988) 59-66. |
[17] |
L. Breiman, Mach. Learn. 45 (2001) 5-32.
DOI URL |
[18] | National Institute of Materials Science (NIMS). Available online: https://smds.nims.go.jp/fatigue/en/ (accessed on 15 June 2020). |
[19] | J. Brownlee, Data preparation for machine learning: data cleaning, feature se-lection, and data transforms in Python, Machine Learning Mastery, 2020. |
[20] | H. Drucker, C.J. Burges, L. Kaufman, A. Smola, V. Vapnik, M.C. Mozer, M.I. Jor-dan, T. Petsche, in: Advances in Neural Information Processing Systems, 9, MIT Press, 1997, pp. 155-161. |
[21] | R. Hecht-Nielsen, in: Neural Networks for Perception, Elsevier, 1992, pp. 65-93. |
[22] | J. Goldberger, G.E. Hinton, S. Roweis, R.R. Salakhutdinov, Adv. Neural Inf. Pro-cess. Syst. 17 (2005) 513-510. |
[23] |
A.E. Hoerl, R.W. Kennard, Technometrics 12 (1970) 55.
DOI URL |
[24] | C. Saunders, A. Gammerman, V. Vovk, in: Proceedings of the Fifteenth Inter-national Conference on Machine Learning, Morgan Kaufmann Publishers Inc, 1998, pp. 515-521. |
[25] | M. Stone, Soc. Ser. B Methodol. 36 (1974) 111-133. |
[26] | B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap, CRC press, 1994. |
[27] | A. Zheng, A. Casari, Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists, O’Reilly Media, Inc., 2018. |
[28] |
D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, T. Lookman, Nat. Commun. 7 (2016) 11241.
DOI URL |
[29] |
D.R. Jones, M. Schonlau, W.J. Welch, J. Glob. Optim. 13 (1998) 455-492.
DOI URL |
[30] |
C.N. Li, R. Duan, W. Fu, H.S. Gao, D.P. Wang, X.J. Di, Mater. Sci. Eng. A 817 (2021) 141337.
DOI URL |
[31] |
B. Hu, H. Guo, R.D.K. Misra, C.J. Shang, Mater. Charact. 176 (2021) 111077.
DOI URL |
[32] |
Z.J. Xie, G. Han, Y.S. Yu, C.J. Shang, R.D.K. Misra, Mater. Charact. 153 (2019) 208-214.
DOI |
[33] |
Z.J. Xie, C.J. Shang, S.V. Subramanian, X.P. Ma, R.D.K. Misra, Scr. Mater. 137 (2017) 36-40.
DOI URL |
[34] |
A.R. Hosseini Far, S.H. Mousavi Anijdan, S.M. Abbasi, Mater. Sci. Eng. A 746 (2019) 384-393.
DOI URL |
[35] |
S.T. Wei, S.P. Lu, Mater. Des. 35 (2012) 43-54.
DOI URL |
[36] |
G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai, Acta Mater. 76 (2014) 425-433.
DOI URL |
[37] |
L. Cho, E.J. Seo, B.C. De Cooman, Scr. Mater. 123 (2016) 69-72.
DOI URL |
[38] | E.J. Seo, L. Cho, J.K. Kim, J. Mola, L.J. Zhao, B.C.D. Cooman, Mater. Sci. Eng. A 439-444 (2019) 740-741. |
[1] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[2] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[3] | Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 1-17. |
[4] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
[5] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[6] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
[7] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[8] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[9] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
[10] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[11] | Defang Tu, Jianqi Yan, Yunbo Xie, Jun Li, Shuo Feng, Mingxu Xia, Jianguo Li, Alex Po Leung. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning [J]. J. Mater. Sci. Technol., 2022, 96(0): 241-247. |
[12] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[13] | Xin Li, Guangcun Shan, C.H. Shek. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability [J]. J. Mater. Sci. Technol., 2022, 103(0): 113-120. |
[14] | Xiaoxiao Geng, Xinping Mao, Hong-Hui Wu, Shuize Wang, Weihua Xue, Guanzhen Zhang, Asad Ullah, Hao Wang. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels [J]. J. Mater. Sci. Technol., 2022, 107(0): 207-215. |
[15] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||