J. Mater. Sci. Technol. ›› 2022, Vol. 108: 26-36.DOI: 10.1016/j.jmst.2021.08.050
• Research Article • Previous Articles Next Articles
Changshu Hea,b,c,*(), Ying Lia,b, Jingxun Weia,b, Zhiqiang Zhanga,b, Ni Tiana,b,c, Gaowu Qina,b,c, Xiang Zhaoa,b
Received:
2021-07-10
Revised:
2021-08-09
Accepted:
2021-08-09
Published:
2021-10-24
Online:
2021-10-24
Contact:
Changshu He
About author:
* E-mail address: changshuhe@mail.neu.edu.cn (C. He).Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging[J]. J. Mater. Sci. Technol., 2022, 108: 26-36.
Zn | Mg | Cu | Mn | Cr | Ti | Fe | Si | Al |
---|---|---|---|---|---|---|---|---|
4.66 | 1.09 | 0.12 | 0.32 | 0.20 | 0.06 | 0.10 | 0.03 | Bal. |
Table 1. Chemical composition of the 7N01 Al alloy (wt.%).
Zn | Mg | Cu | Mn | Cr | Ti | Fe | Si | Al |
---|---|---|---|---|---|---|---|---|
4.66 | 1.09 | 0.12 | 0.32 | 0.20 | 0.06 | 0.10 | 0.03 | Bal. |
Ultimate tensile strength/MPa | Yield strength/MPa | Elongation/% | Microhardness/HV |
---|---|---|---|
392 | 322 | 30.6 | 112 |
Table 2. Mechanical properties of the 7N01 Al alloy.
Ultimate tensile strength/MPa | Yield strength/MPa | Elongation/% | Microhardness/HV |
---|---|---|---|
392 | 322 | 30.6 | 112 |
Fig. 5. Microhardness distributions on the cross section of the air-cooled (AC) and water-cooled (WC) builds along the building direction in the as-fabricated and NA-90d states.
Fig. 6. Macro and microstructures of the air-cooled (AC) and water-cooled (WC) builds: (a) macrostructure of the air-cooled build, EBSD mappings performed at the top region (b) and the bottom region (c) of the air-cooled build, (d) macrostructure of the water-cooled build, EBSD mappings performed at the top region (e) and the bottom region (f) of the water-cooled build.
Samples | Average grain size (Standard deviation)/μm | |
---|---|---|
Top | Bottom | |
Air-cooled build | 3.3 (1.69) | 4.2 (2.39) |
Water-cooled build | 2.4 (1.11) | 2.8 (1.47) |
Table 3. Average grain sizes of the top and the bottom regions in the air- and water-cooled builds.
Samples | Average grain size (Standard deviation)/μm | |
---|---|---|
Top | Bottom | |
Air-cooled build | 3.3 (1.69) | 4.2 (2.39) |
Water-cooled build | 2.4 (1.11) | 2.8 (1.47) |
Fig. 7. STEM images in the (a) top and (c) bottom regions of the air-cooled build, (b) top and (d) bottom regions of the water-cooled build, (e) corresponding mapping images of Al, Zn, Mg, Cr, and Mn, and (f) STEM-EDS results of the particles.
Fig. 8. Nanoscale precipitate characteristics at the top and bottom regions of the air-cooled and water-cooled builds after NA-90d: HRTEM results at the (a) top and (b) bottom regions of the air-cooled build, (c) top and (d) bottom regions of the water-cooled build; (e) inverse FFT image after masking and (f) FFT pattern of the GP-I zone, as outlined in (a); (g) inverse FFT image after masking and (h) FFT pattern of the GP-II zone, as outlined in (b). All the micrographs were captured along the 〈110〉Al orientation.
Fig. 11. Tensile properties of the samples extracted from the air-cooled (AC) and water-cooled (WC) builds along traveling (H) and building (Z) directions: (a, b) ultimate tensile strength and elongation of the samples in the as-fabricated and NA-90d states, respectively; (c, d) engineering stress-strain curves of the samples in the as-fabricated and NA-90d states, respectively.
[1] | M. Srivastava, S. Rathee, S. Maheshwari, A.N. Siddiquee, T.K. Kundra, Crit. Rev. Solid State 1 (2018) 1-33. |
[2] | S. Palanivel, R.S. Mishra, Int. J. Addit. Subtract. Mater. Manuf. 1 (2017) 82-103. |
[3] |
G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34 (2018) 1-38.
DOI |
[4] |
S. Palanivel, H. Sidhar, R.S. Mishra, JOM 67 (2015) 616-621.
DOI URL |
[5] |
Y.Q. Mao, L.M. Ke, C.P. Huang, C.P. Huang, F.C. Liu, Q. Liu, Int. J. Adv. Manuf. Technol. 83 (2016) 1637-1647.
DOI URL |
[6] |
C.S. He, Y. Li, Z.Q. Zhang, J.X. Wei, X. Zhao, Mater. Sci. Eng. A 777 (2020) 139035.
DOI URL |
[7] |
Z.J. Zhao, X.Q. Yang, S.L. Li, D.X. Li, J. Manuf. Process. 38 (2019) 396-410.
DOI URL |
[8] |
S. Palanivel, P. Nelaturu, B. Glass, R.S. Mishra, Mater. Des. 65 (2015) 934-952.
DOI URL |
[9] |
X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 755 (2019) 28-36.
DOI URL |
[10] |
C.Y. Liu, B. Qu, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu, J. Mater. Sci. Technol. 34 (2018) 112-118.
DOI |
[11] |
B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, Z.Y. Ma, J. Mater. Sci. Technol. 33 (2017) 1009-1014.
DOI |
[12] |
H. Lin, Y. Wu, S. Liu, X. Zhou, Mater. Charact. 141 (2018) 74-85.
DOI URL |
[13] |
M.A. Wahid, Z.A. Khan, A.N. Siddiquee, Trans. Nonferrous Met. Soc. China 28 (2018) 193-219.
DOI URL |
[14] |
Q. Wang, Z. Zhao, Y. Zhao, K. Yan, C. Liu, H. Zhang, Mater. Des. 102 (2016) 91-99.
DOI URL |
[15] |
L. Fratini, G. Buffa, R. Shivpuri, Acta Mater 58 (2010) 2056-2067.
DOI URL |
[16] |
L. Fratini, G. Buffa, R. Shivpuri, Int. J. Adv. Manuf. Technol. 43 (2009) 664-670.
DOI URL |
[17] |
Y. Li, C.S. He, J.X. Wei, Z.Q. Zhang, X. Zhao, Mater. Sci. Eng. A 805 (2021) 140590.
DOI URL |
[18] |
A. Deschamps, Y. Bréchet, Scr. Mater. 39 (1998) 1517-1522.
DOI URL |
[19] |
C. Liu, A. Garner, H. Zhao, P.B. Prangnell, B. Gault, D. Raabe, P. Shanthraj, Acta Mater 214 (2021) 116966.
DOI URL |
[20] |
A. Garner, R. Euesden, Y. Yao, Y. Aboura, H. Zhao, J. Donoghue, M. Curioni, B. Gault, P. Shanthraj, Z. Barrett, C. Engel, T.L. Burnett, P.B. Prangnell, Acta Mater 202 (2021) 190-210.
DOI URL |
[21] |
M.H. Zhang, C.B. Li, Y. Zhang, S.D. Liu, J.Y. Jiang, J.G. Tang, L.Y. Ye, X.M. Zhang, Mater. Charact. 172 (2021) 110861.
DOI URL |
[22] |
M. Tiryakio ˘glu, J.S. Robinson, P.D. Eason, Mater. Sci. Eng. A 618 (2014) 22-28.
DOI URL |
[23] |
S.D. Liu, W.J. Liu, Y. Zhang, X.M. Zhang, Y.L. Deng, J. Alloy. Compd. 507 (2010) 53-61.
DOI URL |
[24] |
C.B. Li, S.Q. Han, S.D. Liu, Y.L. Deng, X.M. Zhang, Trans. Nonferrous Met. Soc. China 26 (2016) 2276-2282.
DOI URL |
[25] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater 58 (2010) 248-260.
DOI URL |
[26] |
Y.L. Deng, L. Wan, Y.Y. Zhang, X.M. Zhang, J. Alloy. Compd. 509 (2011) 4636-4642.
DOI URL |
[27] |
B.H. Nie, P.Y. Liu, T.T. Zhou, Mater. Sci. Eng. A 667 (2016) 106-114.
DOI URL |
[28] |
Y.H. Peng, C.Y. Liu, L.L. Wei, H.J. Jiang, Z.J. Ge, Trans. Nonferrous Met. Soc. China 31 (2021) 24-35.
DOI URL |
[29] |
H.J. Zhang, H.J. Liu, J.L. Song, Q.L. Guan, Z.J. Ji, J. Manuf. Process. 50 (2020) 154-160.
DOI URL |
[30] |
Z.Q. Zhang, C.S. He, Y. Li, L. Yu, S. Zhao, X. Xiang, J. Mater. Sci. Technol. 43 (2020) 1-13.
DOI URL |
[31] |
N. Martinez, N. Kumar, R.S. Mishra, K.J. Doherty, J. Alloy. Compd. 713 (2017) 51-63.
DOI URL |
[32] |
W. Xu, J. Liu, D. Chen, J. Mater. Sci. Technol. 31 (2015) 953-961.
DOI URL |
[33] |
C.B. Fuller, M.W. Mahoney, M. Calabrese, L. Micona, Mater. Sci. Eng. A 527 (2010) 2233-2240.
DOI URL |
[34] |
M. Kumar, N.G. Ross, J. Mater. Process. Technol. 231 (2016) 189-198.
DOI URL |
[35] |
N. Martinez, N. Kumar, R.S. Mishra, K.J. Doherty, J. Mater. Sci. 53 (2018) 9273-9286.
DOI URL |
[36] |
H. Zhao, F.D. Geuser, A.K. Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Acta Mater 156 (2018) 318-329.
DOI URL |
[37] |
T.F. Chung, Y.L. Yang, B.M. Huang, Z. Shi, J. Lin, T. Ohmura, J.R. Yang, Acta Mater 149 (2018) 377-387.
DOI URL |
[38] |
Y. Ni, L. Fu, H.Y. Chen, J. Mater. Process. Technol. 265 (2019) 63-70.
DOI URL |
[39] |
C. Sharma, D.K. Dwivedi, P. Kumar, Mater. Des. 64 (2014) 334-344.
DOI URL |
[40] |
Y.Q. Mao, L.M. Ke, Y.H. Chen, F.C. Liu, L. Xing, J. Mater. Sci. Technol. 34 (2018) 228-236.
DOI URL |
[1] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[2] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[3] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[4] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[5] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[6] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[7] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
[8] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[9] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[10] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[11] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[12] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[13] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[14] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[15] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||