J. Mater. Sci. Technol. ›› 2022, Vol. 109: 76-85.DOI: 10.1016/j.jmst.2021.08.062
• Research Article • Previous Articles Next Articles
Wu Qia,b, Wenrui Wanga,b,**(), Xiao Yangc,*(
), Lu Xiea,b, Jiaming Zhanga,b, Dongyue Lia,b, Yong Zhangd
Received:
2021-05-19
Revised:
2021-08-16
Accepted:
2021-08-20
Published:
2022-05-20
Online:
2021-10-30
Contact:
Wenrui Wang,Xiao Yang
About author:
* E-mail addresses: yangxiao@mail.ipc.ac.cn (X. Yang).Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 109: 76-85.
Alloy | Region | Co | Cr | Fe | Ni | Zr |
---|---|---|---|---|---|---|
Zr0 | Normal composition | 25.00 | 25.00 | 25.00 | 25.00 | - |
P1 | 25.53 | 25.06 | 25.35 | 24.06 | - | |
Zr0.25 | Normal composition | 23.53 | 23.53 | 23.53 | 23.53 | 5.88 |
P1 | 25.18 | 28.11 | 28.50 | 18.15 | 0.05 | |
P2 | 22.75 | 11.97 | 15.74 | 33.35 | 16.19 | |
Zr0.5 | Normal composition | 22.22 | 22.22 | 22.22 | 22.22 | 11.12 |
P1 | 21.57 | 35.45 | 28.08 | 14.78 | 0.11 | |
P2 | 26.48 | 5.85 | 12.42 | 30.85 | 24.40 | |
Zr1 | Normal composition | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
P1 | 13.71 | 52.44 | 28.36 | 5.15 | 0.34 | |
P2 | 22.48 | 6.58 | 15.50 | 27.84 | 27.60 |
Table 1. Nominal compositions of CoCrFeNiZrx alloys and the EDS results in different regions (at.%).
Alloy | Region | Co | Cr | Fe | Ni | Zr |
---|---|---|---|---|---|---|
Zr0 | Normal composition | 25.00 | 25.00 | 25.00 | 25.00 | - |
P1 | 25.53 | 25.06 | 25.35 | 24.06 | - | |
Zr0.25 | Normal composition | 23.53 | 23.53 | 23.53 | 23.53 | 5.88 |
P1 | 25.18 | 28.11 | 28.50 | 18.15 | 0.05 | |
P2 | 22.75 | 11.97 | 15.74 | 33.35 | 16.19 | |
Zr0.5 | Normal composition | 22.22 | 22.22 | 22.22 | 22.22 | 11.12 |
P1 | 21.57 | 35.45 | 28.08 | 14.78 | 0.11 | |
P2 | 26.48 | 5.85 | 12.42 | 30.85 | 24.40 | |
Zr1 | Normal composition | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
P1 | 13.71 | 52.44 | 28.36 | 5.15 | 0.34 | |
P2 | 22.48 | 6.58 | 15.50 | 27.84 | 27.60 |
Alloy | Yield strength, σy (MPa) | Fracture strength, σmax (MPa) | Fracture strain, εmax (%) |
---|---|---|---|
Zr0 | 180 | No fracture | No fracture |
Zr0.25 | 655 | > 2765 | > 50 |
Zr0.5 | 1649 | 2088 | 4.8 |
Zr1 | - | 1598 | 1.2 |
Table 2. Mechanical properties of CoCrFeNiZrx HEAs.
Alloy | Yield strength, σy (MPa) | Fracture strength, σmax (MPa) | Fracture strain, εmax (%) |
---|---|---|---|
Zr0 | 180 | No fracture | No fracture |
Zr0.25 | 655 | > 2765 | > 50 |
Zr0.5 | 1649 | 2088 | 4.8 |
Zr1 | - | 1598 | 1.2 |
Alloy | icorr (A cm-2) | Ecorr (V) | Epit (V) |
---|---|---|---|
Zr0 | 2.132 × 10-8 | -0.126 | 0.650 |
Zr0.25 | 3.640 × 10-8 | -0.178 | 0.314 |
Zr0.5 | 4.305 × 10-8 | -0.247 | 0.245 |
Zr1 | 3.266 × 10-7 | -0.380 | 0.109 |
SS304 | 6.081 × 10-8 | -0.124 | 0.257 |
Table 3. Corrosion dynamics parameters of CoCrFeNiZrx HEAs and SS304.
Alloy | icorr (A cm-2) | Ecorr (V) | Epit (V) |
---|---|---|---|
Zr0 | 2.132 × 10-8 | -0.126 | 0.650 |
Zr0.25 | 3.640 × 10-8 | -0.178 | 0.314 |
Zr0.5 | 4.305 × 10-8 | -0.247 | 0.245 |
Zr1 | 3.266 × 10-7 | -0.380 | 0.109 |
SS304 | 6.081 × 10-8 | -0.124 | 0.257 |
Fig. 7. SEM image and EDS mappings of the CoCrFeNiZrx alloys after the potentiodynaic polarization tests in 3.5 wt% NaCl solution (a) Zr0, (b) Zr0.25, (c) Zr0.5, (d) Zr1.
Alloy | Rs (Ω cm2) | Q (Ω-1 cm-2 s - n) | n | Rp (Ω cm2) |
---|---|---|---|---|
Zr0 | 21.63 | 1.915 × 10-5 | 0.877 | 5.978 × 105 |
Zr0.25 | 7.587 | 2.693 × 10-5 | 0.899 | 4.108 × 105 |
Zr0.5 | 7.374 | 2.390 × 10-5 | 0.925 | 3.070 × 105 |
Zr1 | 11.27 | 2.834 × 10-5 | 0.914 | 1.251 × 105 |
SS304 | 9.617 | 1.989 × 10-5 | 0.883 | 3.127 × 105 |
Table 4. Impedance fitting parameters of the CoCrFeNiZrx HEAs and SS304 by the equivalent circuit.
Alloy | Rs (Ω cm2) | Q (Ω-1 cm-2 s - n) | n | Rp (Ω cm2) |
---|---|---|---|---|
Zr0 | 21.63 | 1.915 × 10-5 | 0.877 | 5.978 × 105 |
Zr0.25 | 7.587 | 2.693 × 10-5 | 0.899 | 4.108 × 105 |
Zr0.5 | 7.374 | 2.390 × 10-5 | 0.925 | 3.070 × 105 |
Zr1 | 11.27 | 2.834 × 10-5 | 0.914 | 1.251 × 105 |
SS304 | 9.617 | 1.989 × 10-5 | 0.883 | 3.127 × 105 |
Element | Zr0 | Zr0.25 | Zr0.5 | Zr1 |
---|---|---|---|---|
Cocomp / Comet | 2.67 | 1.89 | 1.80 | 1.58 |
Crcomp / Crmet | 10.06 | 7.42 | 5.07 | 4.00 |
Fecomp / Femet | 5.34 | 3.78 | 2.99 | 2.75 |
Nicomp / Nimet | 1.72 | 0.92 | 0.80 | 0.49 |
Zrcomp / Zrmet | - | 6.13 | 5.04 | 3.66 |
Table 5. Ratio of each element compound to the metal state in the passive film of CoCrFeNiZrx alloy.
Element | Zr0 | Zr0.25 | Zr0.5 | Zr1 |
---|---|---|---|---|
Cocomp / Comet | 2.67 | 1.89 | 1.80 | 1.58 |
Crcomp / Crmet | 10.06 | 7.42 | 5.07 | 4.00 |
Fecomp / Femet | 5.34 | 3.78 | 2.99 | 2.75 |
Nicomp / Nimet | 1.72 | 0.92 | 0.80 | 0.49 |
Zrcomp / Zrmet | - | 6.13 | 5.04 | 3.66 |
Phase | Surface (hkl) | Energy (eV/A2) |
---|---|---|
Ni7Zr2 | 100 | 0.1365 |
010 | 0.1488 | |
001 | 0.1342 | |
110 | 0.1398 | |
101 | 0.1299 | |
011 | 0.1460 | |
111 | 0.1396 | |
Laves-ZrCo2 | 100 | 0.1534 |
110 | 0.1522 | |
111 | 0.1593 |
Table 6. Low index surfaces of the Ni7Zr2 and ZrCo2 phase.
Phase | Surface (hkl) | Energy (eV/A2) |
---|---|---|
Ni7Zr2 | 100 | 0.1365 |
010 | 0.1488 | |
001 | 0.1342 | |
110 | 0.1398 | |
101 | 0.1299 | |
011 | 0.1460 | |
111 | 0.1396 | |
Laves-ZrCo2 | 100 | 0.1534 |
110 | 0.1522 | |
111 | 0.1593 |
Alloy | ΔHmix (kJ mol-1) | Δδ (%) | Ω | Structure |
---|---|---|---|---|
Zr0 | -3.75 | 1.18 | 5.72 | FCC |
Zr0.25 | -10.35 | 6.41 | 2.30 | FCC+Ni7Zr2 |
Zr0.5 | -15.51 | 8.38 | 1.60 | FCC+Laves |
Zr1 | -22.72 | 10.40 | 1.13 | BCC+Laves |
Table 7. Calculated parameters of ΔHmix, Δδ, and Ω for CoCrFeNiZrx HEAs.
Alloy | ΔHmix (kJ mol-1) | Δδ (%) | Ω | Structure |
---|---|---|---|---|
Zr0 | -3.75 | 1.18 | 5.72 | FCC |
Zr0.25 | -10.35 | 6.41 | 2.30 | FCC+Ni7Zr2 |
Zr0.5 | -15.51 | 8.38 | 1.60 | FCC+Laves |
Zr1 | -22.72 | 10.40 | 1.13 | BCC+Laves |
Phase | Zr0-FCC | Zr0.25-FCC | Zr0.5-FCC | Zr1-BCC |
---|---|---|---|---|
VEC | 8.23 | 8.04 | 7.80 | 7.18 |
Table 8. Calculated parameters of VEC for solid solution of CoCrFeNiZrx alloys.
Phase | Zr0-FCC | Zr0.25-FCC | Zr0.5-FCC | Zr1-BCC |
---|---|---|---|---|
VEC | 8.23 | 8.04 | 7.80 | 7.18 |
[1] | Y. Li, C. Ning, Bioact. Mater. 4 (2019) 189-195. |
[2] | B.M. Wei, Theory and Application of Metal Corrosion, Press of Chemical Indus-try, Peking, 1984. |
[3] |
E. Husain, T.N. Narayanan, J.J. Taha-Tijerina, S. Vinod, R. Vajtai, P.M. Ajayan, ACS Appl. Mater. Interfaces 5 (2013) 4129-4135.
DOI URL |
[4] |
Q. Zhou, S. Sheikh, P. Ou, D. Chen, Q. Hu, S. Guo, Electrochem. Commun. 98 (2019) 63-68.
DOI URL |
[5] |
Y. Wang, B. Li, M. Ren, C. Yang, H. Fu, Mater. Sci. Eng. A 491 (2008) 154-158.
DOI URL |
[6] |
Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloy. Compd. 488 (2009) 57-64.
DOI URL |
[7] |
D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, Acta Mater. 123 (2017) 285-294.
DOI URL |
[8] |
Y. Fu, J. Li, H. Luo, C. Du, X. Li, J. Mater. Sci. Technol. 80 (2021) 217-233.
DOI URL |
[9] |
M.J. Kim, G.C. Kang, S.H. Hong, H.J. Park, S.C. Mun, G. Song, K.B. Kim, J. Mater. Sci. Technol. 57 (2020) 131-137.
DOI URL |
[10] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[11] |
L. Sun, T.H. Simm, T.L. Martin, S. McAdam, D.R. Galvin, K.M. Perkins, P.A.J. Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, H.K.D.H. Bhadeshia, Acta Mater. 149 (2018) 285-301.
DOI URL |
[12] |
Y.W. Chai, K. Kato, C. Yabu, S. Ishikawa, Y. Kimura, Acta Mater. 198 (2020) 230-241.
DOI URL |
[13] |
C.D. Rabadia, Y.J. Liu, S.F. Jawed, L. Wang, Y.H. Li, X.H. Zhang, T.B. Sercombe, H. Sun, L.C. Zhang, Mater. Des. 160 (2018) 1059-1070.
DOI URL |
[14] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116 (2016) 332-342.
DOI URL |
[15] | Z. Niu, Y. Wang, C. Geng, J. Xu, Y. Wang, J. Alloy. Compd. 820 (2020). |
[16] |
H. Jiang, L. Jiang, D. Qiao, Y. Lu, T. Wang, Z. Cao, T. Li, J. Mater. Sci. Technol. 33 (2017) 712-717.
DOI |
[17] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[18] |
A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, L. Schultz, Mater. Sci. Eng. A 267 (1999) 294-300.
DOI URL |
[19] | R. Chelariu, D. Mareci, C. Munteanu, Mater. Corros. 64 (2013) 585-591. |
[20] |
D.Q. Martins, W.R. Osório, M.E.P. Souza, R. Caram, A. Garcia, Electrochim. Acta 53 (2008) 2809-2817.
DOI URL |
[21] | J.L. Gu, Y. Shao, H.T. Bu, J.L. Jia, K.F. Yao, Corros. Sci. (2020) 165. |
[22] |
J. Jayaraj, C. Thinaharan, S. Ningshen, C. Mallika, U.K. Mudali, Intermetallics 89 (2017) 123-132.
DOI URL |
[23] |
W. Huo, H. Zhou, F. Fang, Z. Xie, J. Jiang, Mater. Des. 134 (2017) 226-233.
DOI URL |
[24] |
G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
DOI PMID |
[25] |
A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, Z.K. Liu, Calphad 42 (2013) 13-18.
DOI URL |
[26] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[27] |
R. Jain, A. Jain, M.R. Rahul, A. Kumar, M. Dubey, R.K. Sabat, S. Samal, G. Phanikumar, Materialia 14 (2020) 100896.
DOI URL |
[28] |
S. Sheikh, H. Mao, S. Guo, J. Appl. Phys. 121 (2017) 194903.
DOI URL |
[29] |
H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao, J.A. Hawk, T. Li, Mater. Des. 142 (2018) 101-105.
DOI URL |
[30] |
M.H. Tsai, A.C. Fan, H.A. Wang, J. Alloy. Compd. 695 (2017) 1479-1487.
DOI URL |
[31] | H. Luo, S. Zou, Y.H. Chen, Z. Li, C. Du, X. Li, Corros. Sci. (2020) 163. |
[32] |
C.A. Della Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri, Corros. Sci. 57 (2012) 154-161.
DOI URL |
[33] |
W. Wang, J. Wang, Z. Sun, J. Li, L. Li, X. Song, X. Wen, L. Xie, X. Yang, J. Alloy. Compd. 812 (2020) 152139.
DOI URL |
[34] |
S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, Y. Yang, Corros. Sci. 164 (2020) 108315.
DOI URL |
[35] |
Y. Lou, C. Dai, W. Chang, H. Qian, L. Huang, C. Du, D. Zhang, Corros. Sci. 165 (2020) 108390.
DOI URL |
[36] |
Y.S. Lu, C.W. Lu, Y.T. Lin, H.W. Yen, Y.L. Lee, J. Electrochem. Soc. 167 (2020) 081506.
DOI URL |
[37] |
H. Tian, X. Cheng, Y. Wang, C. Dong, X. Li, Electrochim. Acta 267 (2018) 255-268.
DOI URL |
[38] |
V.R. Matolıń, K. Mašek, I. Matolıńová, T. Skála, K. Veltruská, Appl. Surf. Sci. 235 (2004) 202-206.
DOI URL |
[39] |
W. Wang, W. Qi, L. Xie, X. Yang, J. Li, Y. Zhang, Materials 12 (2019) 694.
DOI URL |
[40] | C. Dai, H. Luo, J. Li, C. Du, Z. Liu, J. Yao, Appl. Surf. Sci. (2019) 143903. |
[41] |
Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119 (2017) 33-45.
DOI URL |
[42] |
C.M. Lin, H.L. Tsai, H.Y. Bor, Intermetallics 18 (2010) 1244-1250.
DOI URL |
[43] |
Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, Q. Song, J. Alloy. Compd. 805 (2019) 585-596.
DOI URL |
[44] |
Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, B. Yang, Corros. Sci. 133 (2018) 120-131.
DOI URL |
[45] |
C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, H.F. Zhang, J.Q. Wang, Intermetallics 114 (2019) 106599.
DOI URL |
[46] |
Y. Sha, T.H. Yu, B.V. Merinov, W.A. Goddard, ACS Catal. 4 (2014) 1189-1197.
DOI URL |
[47] |
S.N. Zhevnenko, I.S. Petrov, D. Scheiber, V.I. Razumovskiy, Acta Mater. 205 (2021) 116565.
DOI URL |
[48] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[49] |
S. Guo, Q. Hu, C. Ng, C.T. Liu, Intermetallics 41 (2013) 96-103.
DOI URL |
[50] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233-238.
DOI URL |
[51] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[52] |
Z. Wang, S. Guo, C.T. Liu, JOM 66 (2014) 1966-1972.
DOI URL |
[53] |
S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011) 103505.
DOI URL |
[54] |
C. Zhang, F. Zhang, S. Chen, W. Cao, JOM 64 (2012) 839-845.
DOI URL |
[55] |
V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, P. Gillon, Mater. Chem. Phys. 117 (2009) 142-147.
DOI URL |
[1] | Yu Lu, Richard Turner, Jeffery Brooks, Hector Basoalto. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 117-127. |
[2] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[3] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[4] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[5] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
[6] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[7] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
[8] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
[9] | Bohong Zhang, Jie Chen, Pengfei Wang, Bingtao Sun, Yu Cao. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique [J]. J. Mater. Sci. Technol., 2022, 111(0): 111-119. |
[10] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[11] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[12] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[13] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[14] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[15] | Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys [J]. J. Mater. Sci. Technol., 2022, 112(0): 11-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||