J. Mater. Sci. Technol. ›› 2022, Vol. 116: 214-223.DOI: 10.1016/j.jmst.2021.12.013
• Research Article • Previous Articles Next Articles
Hoon Sohna,b, Peipei Liua,b,*(), Hansol Yoona,c, Kiyoon Yia, Liu Yanga,d, Sangjun Kima
Received:
2021-08-02
Revised:
2021-12-05
Accepted:
2021-12-06
Published:
2022-01-01
Online:
2022-07-26
Contact:
Peipei Liu
About author:
∗ Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Repub- lic of Korea. E-mail address: peipeiliu@kaist.ac.kr (P. Liu).Hoon Sohn, Peipei Liu, Hansol Yoon, Kiyoon Yi, Liu Yang, Sangjun Kim. Real-time porosity reduction during metal directed energy deposition using a pulse laser[J]. J. Mater. Sci. Technol., 2022, 116: 214-223.
Fig. 1. Schematic configuration of a DED system with an incorporated PR laser, (a) coaxial design, (b) off-axial design, and (c) the hardware realization of the off-axial design.
Empty Cell | Parameters (unit) | ||||||
---|---|---|---|---|---|---|---|
Empty Cell | Laser type | Wavelength (nm) | Pulse duration (ns) | Max. pulse energy (mj) | Max. peak power (MW) | Repetition rate (Hz) | Max. averaged power (W) |
DED laser | Yb-fiber cw laser | 1070 | N/A | N/A | N/A | N/A | 1000 |
PR laser | Nd:YAG pulse laser | 532 | 10 | 11.5 | 1.15 | 100 | 1.15 |
Table 1. Parameters of DED and PR lasers.
Empty Cell | Parameters (unit) | ||||||
---|---|---|---|---|---|---|---|
Empty Cell | Laser type | Wavelength (nm) | Pulse duration (ns) | Max. pulse energy (mj) | Max. peak power (MW) | Repetition rate (Hz) | Max. averaged power (W) |
DED laser | Yb-fiber cw laser | 1070 | N/A | N/A | N/A | N/A | 1000 |
PR laser | Nd:YAG pulse laser | 532 | 10 | 11.5 | 1.15 | 100 | 1.15 |
Property (unit) | Liquidus temperature (K) | Solidus temperature (K) | Evaporation temperature (K) | Solid density (kgm-3) | Liquid density (kgm-3) | Thermal conductivity (Wm-1K-1) | Heat capacity at a constant pressure (Jkg-1K-1) | Surface tension (Nm-1) | Laser absorption coefficient |
---|---|---|---|---|---|---|---|---|---|
Value | 1923 | 1877 | 3533 | 4420-0.154(T-298K) | 3920-0.680(T-1923K) | 1.260+0.016T (T ≤ 1268K) 3.513+0.013T (1268K< T ≤ 1923K) -12.752+0.024T (T > 1923 K) | 500 | 1.53-0.28 × 10-3(T-1941K) | 0.4 |
Table 2. Physical properties of Ti-6Al-4V used for sample manufacturing [33].
Property (unit) | Liquidus temperature (K) | Solidus temperature (K) | Evaporation temperature (K) | Solid density (kgm-3) | Liquid density (kgm-3) | Thermal conductivity (Wm-1K-1) | Heat capacity at a constant pressure (Jkg-1K-1) | Surface tension (Nm-1) | Laser absorption coefficient |
---|---|---|---|---|---|---|---|---|---|
Value | 1923 | 1877 | 3533 | 4420-0.154(T-298K) | 3920-0.680(T-1923K) | 1.260+0.016T (T ≤ 1268K) 3.513+0.013T (1268K< T ≤ 1923K) -12.752+0.024T (T > 1923 K) | 500 | 1.53-0.28 × 10-3(T-1941K) | 0.4 |
Empty Cell | PR laser energy (mJ) | |||
---|---|---|---|---|
Printing scheme | Track_A | Track_B | Track_C | Track_D |
80 mm-long single track | 0.0 | 7.5 | 9.7 | 11.5 |
Empty Cell | Cuboid_A | Cuboid_B | Cuboid_C | Cuboid_D |
3-layer cuboid | 0.0 | 7.5 | 9.7 | 11.5 |
Table 3. Summary of the Ti-6Al-4V samples and corresponding PR laser energy levels.
Empty Cell | PR laser energy (mJ) | |||
---|---|---|---|---|
Printing scheme | Track_A | Track_B | Track_C | Track_D |
80 mm-long single track | 0.0 | 7.5 | 9.7 | 11.5 |
Empty Cell | Cuboid_A | Cuboid_B | Cuboid_C | Cuboid_D |
3-layer cuboid | 0.0 | 7.5 | 9.7 | 11.5 |
Fig. 4. Effect of PR laser energy on porosity of cuboid samples (measured by X-ray microscopy); pores are highlighted in different colors according to the pore size.
Fig. 5. Relationships of (a) pore number, (b) pore volume fraction, and (c) averaged pore size with respect to the PR laser energy (based on X-ray microscopy of cuboid samples).
Fig. 7. (a) Optical microscopy (OM) images and (b) the corresponding cross-sectioned profiles (including heat affected zones) obtained from single-track samples manufactured under different PR laser energy levels.
Fig. 8. Comparison of geometries of cuboid samples manufactured under different PR laser energy levels (measured by laser line scanner): (a) 3D geometry of Cuboid_A, and (b) the representative cross-sectioned profiles along the XZ plane.
Fig. 9. Effect of PR laser energy level on dimensions of cuboid samples (based on measurements with laser line scanner); the standard deviation values are shown in parentheses.
Fig. 11. Effect of PR laser energy level on length and thickness of α lath obtained from different cuboid samples; the standard deviation values are shown in parentheses.
Fig. 12. Schematic illustration of the effects of a PR laser on melt pool: (a) accelerated and turbulent Marangoni flow, (b) ultrasonic waves, and (c) shock waves.
Fig. 13. (a) Model description (A 10 mJ PR laser was applied at 0.4 s, and the concurrent temperature distribution of the model at 0.4 s is shown), (b) temperature distribution of the melt pool at t = 0.4 s + 1 μs with a PR laser, (c) temperature distribution of the melt pool at t = 0.4 s + 1 μs without a PR laser, and (d) temperature difference between (b) and (c).
Fig. 14. Effect of PR laser on time-variation of the top surface temperature of the melt pool at t = 0.4 s + 1 μs (a) with and (b) without a PR laser (based on Flow-3D simulation).
[1] | D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu, Science 372 (6545) (2021) 1487. |
[2] |
A. Nouri, A.R. Shirvan, Y. Li, C. Wen, J. Mater. Sci. Technol. 94 (2021) 196-215.
DOI URL |
[3] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Int. J. Mach. Tools Manuf. 133 (2018) 85-102.
DOI URL |
[4] |
S. Sanchez, P. Smith, Z. Xu, G. Gaspard, C.J. Hyde, W.W. Wits, I.A. Ashcroft, H. Chen, A.T. Clare, Int. J. Mach. Tools Manuf. 165 (2021) 103729.
DOI URL |
[5] |
T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A.M. Beese, A.D. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[6] |
H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, D. Trim-ble, Int. J. Mach. Tools Manuf. 128 (2018) 1-20.
DOI URL |
[7] | L. Sinclair, C.L.A. Leung, S. Marussi, S.J. Clark, Y. Chen, M.P. Olbinado, A. Rack, J. Gardy, G.J. Baxter, P.D. Lee, Addit. Manuf. 36 (2020) 101512. |
[8] | T. Hauser, R.T. Reisch, P.P. Breese, B.S. Lutz, M. Pantano, Y. Nalam, K. Bela, T. Kamps, J. Volpp, A.F.H. Kaplan, Addit. Manuf. 41 (2021) 101993. |
[9] |
J. Huang, N. Warnken, J.C. Gebelin, M. Strangwood, R.C. Reed, Metall. Mater. Trans. A 43 (2011) 582-591.
DOI URL |
[10] | Y. Chen, S.J. Clark, L. Sinclair, C.L.A. Leung, S. Marussi, T. Connolley, R.C. At- wood, G.J. Baxter, M.A. Jones, I. Todd, P.D. Lee, Addit. Manuf. 41 (2021) 101969. |
[11] |
X.B. Li, S. Xiong, Z. Guo, J. Mater. Sci. Technol. 32 (2016) 54-61.
DOI |
[12] |
S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, Int. J. Fatigue 48 (2013) 300-307.
DOI URL |
[13] |
Y. Kakinuma, M. Mori, Y. Oda, T. Mori, M. Kashihara, A. Hansel, M. Fujishima, CIRP Ann. 65 (1) (2016) 209-212.
DOI URL |
[14] | H.E. Sabzi, S. Maeng, X. Liang, M. Simonelli, N.T. Aboulkhair, P.E.J. River- a-Díaz-del-Castillo, Addit. Manuf. 34 (2020) 101360. |
[15] |
A.N. Ol’shanskii, B.P. Morozov, Weld. Int. 18 (4) (2004) 304-306.
DOI URL |
[16] |
G. Kasperovich, J. Haubrich, J. Gussone, G. Requena, Mater. Des. 105 (2016) 160-170.
DOI URL |
[17] |
A.W. AlShaer, L. Li, A. Mistry, Opt. Laser Technol. 64 (2014) 162-171.
DOI URL |
[18] |
A.G. Demir, B. Previtali, Int. J. Adv. Manuf. Technol. 93 (2017) 2697-2709.
DOI URL |
[19] |
P. Li, D. Warner, J. Pegues, M. Roach, N. Shamsaei, N. Phan, Int. J. Fatigue 126 (2019) 284-296.
DOI URL |
[20] |
P. Liu, K. Yi, I. Jeon, H. Sohn, NDT E Int. 122 (2021) 102491.
DOI URL |
[21] |
D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, А. Lamikiz, G.I. Prokopenko, Surf. Coat. Technol. 381 (2020) 125136.
DOI URL |
[22] | Z. Tong, H. Liu, J. Jiao, W. Zhou, Y. Yang, X. Ren, Addit. Manuf. 35 (2020) 101417. |
[23] |
X. Zheng, Y.N. Shi, L. Lou, J. Mater. Sci. Technol. 31 (2015) 1151-1157.
DOI |
[24] |
F. Fetzer, M. Sommer, R. Weber, J.P. Weberpals, T. Graf, Opt. Lasers Eng. 108 (2018) 68-77.
DOI URL |
[25] | M. Gong, Y. Meng, S. Zhang, Y. Zhang, X. Zeng, M. Gao, Addit. Manuf. 33 (2020) 101180. |
[26] |
S. Pang, W. Chen, J. Zhou, D. Liao, J. Mater, Process. Technol. 217 (2015) 131-143.
DOI URL |
[27] |
J. Shen, B. Li, S. Hu, H. Zhang, X. Bu, Opt. Laser Technol. 93 (2017) 118-126.
DOI URL |
[28] |
W. Cong, F. Ning, Int. J. Mach. Tools Manuf. 121 (2017) 61-69.
DOI URL |
[29] |
F. Ning, Y. Hu, W. Cong, Rapid Prototyp. J. 25 (3) (2019) 581-591.
DOI URL |
[30] |
C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun. 11 (2020) 142.
DOI PMID |
[31] | C.J. Todaro, M.A. Easton, D. Qiu, M. Brandt, D.H. StJohn, M. Qian, Addit. Manuf. 37 (2021) 101632. |
[32] |
J. Zhou, H.L. Tsai, Int. J. Heat Mass Transf. 50 (11-12) (2007) 2217-2235.
DOI URL |
[33] |
T. Zhang, H. Li, S. Liu, S. Shen, H. Xie, W. Shi, G. Zhang, B. Shen, L. Chen, B. Xiao, M. Wei, J. Phys. D Appl. Phys. 52 (2019) 055302.
DOI URL |
[34] |
N.A. Kistler, D.J. Corbin, A.R. Nassar, E.W. Reutzel, A.M. Beese, J. Mater. Process. Technol. 264 (2019) 172-181.
DOI URL |
[35] |
J. Han, J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Rapid Prototyp. J. 23 (2017) 217-226.
DOI URL |
[36] |
S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, P.B. Prangnell, Mater. Charact. 102 (2015) 47-61.
DOI URL |
[37] |
V. Prithivirajan, M.D. Sangid, Mater. Des. 150 (2018) 139-153.
DOI URL |
[38] |
S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, J. Cao, Acta Mater. 132 (2017) 106-117.
DOI URL |
[39] |
P. Liu, H. Sohn, Ultrasonics 69 (2016) 248-258.
DOI URL |
[40] |
K. Shah, A.J. Pinkerton, A. Salman, L. Li, Mater. Manuf. Process. 25 (2010) 1372-1380.
DOI URL |
[41] |
A. Kidess, S. Kenjereš, B.W. Righolt, C.R. Kleijn, Int. J. Therm. Sci. 104 (2016) 412-422.
DOI URL |
[42] |
M.W. Sigrist, F.K. Kneubühl, J. Acoust. Soc. Am. 64 (1978) 1652-1663.
DOI URL |
[43] | M.W. Sigrist, J. Appl. Phys. 60 (1986) R83-R122. |
[44] | S. Petzoldt, J. Reif, E. Matthias, Appl. Surf. Sci. 96 (1996) 199-204. |
[45] | J.B. Walter, K.L. Telschow, R.J. Conant, in:Review of Progress in Quantitative Nondestructive Evaluation, Springer, Boston, MA, 1995, pp. 507-512. |
[46] |
J. Šponer, Ultrasonics 29 (1991) 376-380.
DOI URL |
[47] | C.F. Delale(Ed.), Bubble dynamics and shock waves, Vol. 8, Springer Science & Business Media, 2012. |
[48] |
Y. Wang, C. Liu, C. Li, Results Phys. 22 (2021) 103920.
DOI URL |
[1] | Xin Gai, Rui Liu, Yun Bai, Shujun Li, Yang Yang, Shenru Wang, Jianguo Zhang, Wentao Hou, Yulin Hao, Xing Zhang, Rui Yang, R.D.K. Misra. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: the significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97(0): 272-282. |
[2] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[3] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[4] | Yu Lu, Richard Turner, Jeffery Brooks, Hector Basoalto. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 117-127. |
[5] | S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Sun, T. Song, M. Brandt, M. Qian. Variant selection in additively manufactured alpha-beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 113(0): 14-21. |
[6] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
[7] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
[8] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[9] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[10] | Chengqi Sun, Yanqing Li, Kuilong Xu, Baotong Xu. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77(0): 223-236. |
[11] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
[12] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[13] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[14] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[15] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||